VEE Pro Advanced Techniques

Notice

The information contained in this document is subject to change without
notice.

Agilent Technologies makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Agilent Technologies
Inc. shall not be liable for errors contained herein or for any direct, indirect,
special, incidental, or consequential damages in connection with the
furnishing, performance, or use of this material.

This document contains information which is protected by copyright. No
part of this manua may be reproduced in any form or by any means
(including electronic storage and retrieval or trand ation into another
language) without prior agreement and written consent from Agilent
Technologies Inc., as governed by United States and international copyright
laws.

U.S. Government Restricted Rights

The Software and Documentation have been developed entirely at private
expense. They are delivered and licensed as “ Commercial computer
software” as defined in DFAR 252.227-7014 (June 1995), as a“ commercial
item” asdefined in FAR 2.101(a), or as “Restricted computer software” as
defined in FAR 52.227-19 (June 1987) (or any equivalent agency regulation
or contract clause), whichever is applicable. Use, duplication, or disclosure
of Software is subject to Agilent Technologies' standard commercial license
terms, and non-DOD Departments and Agencies of the U.S. Government
will receive no greater than Restricted Rights as defined in FAR 52.227-
19(c)(1-2) (June 1987). U.S. Government users will receive no greater than
Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-
7015(b)(2) (November 1995), as applicable in any technical data.

Copyright © 2000 Agilent Technologies Inc. All rights reserved.

Trademark Information

Microsoft®, MS-DOS®, Windows®, M S Windows®, and Windows NT®
are U.S. registered trademarks of Microsoft Corporation.

MATLAB® is aregistered trademark of The MathWorks, Inc.
NetscapeisaU.S. trademark of Netscape Communications Corporation.
UNIX® isaregistered trademark of the Open Group.

Printing History

Edition 1 - March 2000 Reflects software version 6.0

ConventionsUsed in ThisManual

This manual uses the following typographical conventions:

Getting Sarted

Dialog Box

File

dir filename

File = Open

Sml | Med | Lrg

Press Enter

Press Ctrl + O

Italicized text is used for book titles and for
emphasis.

Bold text is used for the first instance of aword
that is defined in the glossary.

Computer font represents text that you will see
on the screen, including menu names, features,
buttons, or text that you have to enter.

In this context, the text in computer font
represents an argument that you type exactly as
shown, and the italicized text represents an
argument that you must replace with an actual
value.

The“=" isused in ashorthand notation to show
thelocation of Agilent VEE featuresin the menu.
For example, “File = Open” meansto select
the File menu and then select open.

Choicesin computer font, separated with bars
(]), indicate that you should choose one of the
options.

In this context, bold represents a key to presson
the keyboard.

Represents a combination of keys on the
keyboard that you should press at the same time.

Contents

1. Introduction

ADOUt TRISM@NUAL ... e 3
ConfIQUIING VEE ..ottt 5
Configuring VEE for WindOWS...........ccooureeieineneseneeeeese s 5
Color and FONt SELHINGS.......coervereriererieieeeere s 5
Customizing 1€on BitMaps........ccocevcveevienieeiesie e see e 6
Selecting aBitmap for aPanel VIiew ... 6
Configuring VEE for UNIXocviiiiecceece s seeiee e seeeas 7
Color and FONt SELHINGS.coervererererienieieerese e 7
Changing X11 AttributeS (UNIX) ...c.ooeieiririniriceeeeeese e 7
Screen Colors Change (UNIX) e 8
Attempt to Use Too Many Colors (UNIX)cccceeeviienveciecnieeneens 8
Applicationsthat Use aLocal Color Map (UNIX)cccvveveiieennnnne 9
Using Non-USASCII Keyboards (UNIX)coooveviiieivrceereccieeniens 11
Using HP-GL Plotters (UNIX) ...cooiirieieirineseeeeerese e 11
Using VEE EXample Programsccccoiereneenesienenessesesese s 14
The EXample DIreCtOri€S.........cvveriiiriene s 14
RUNNing the EXaMPIES........ccoveviriicrie e see e 14
Using Library ODJECES.......cooeiieiiirie et 15
FOrmula ObJECES.......ccceecee e 15
Supported 1/0 INtEIfACES........ccueiririiere e 16
Using VEE EXeCUtioN MOUES..........coueiriririerieieceesiesie s 17
Setting EXeCUtion MOUES........ccccvriririerierieiceesiees e 17
What is an EXecution MOGE?ccoeieirveeiee e 17

Why should | want to change Execution Modes?............cccce.... 18

How do | know when to change Execution Modes?.................... 18
Guidelines to Switching Execution Modes..........cccoveeeeieiivenenee. 19
ADbout the COMPITENcoiiiieer s 19
Execution Mode Changes. VEE 3tOVEE 4........cccoevvvcveveccieenienne 21
Line Colorsin Compiler MOdEcccevevverrieeve e 21
Potential Compatibility Problems.........ccccccveevience v 21

Contents-1

Execution Mode Changes: VEE 4t0 VEE 5., 29

About the VEE 5 Execution Mode..........cccccevvvieeiennceesece s, 29
Converting Programs to VEE 5 Execution Mode...........cccccuuenee. 29
VEE 5 Execution Mode Changes........c.ccoveeveeeveenceseessieneeeneeenns 30
Using VEE 5 Mode in HP-UX ... 34
Execution Mode Changes: VEE 5t0 VEE 6..........ccccccoveniniiienienens 35
About the VEE 5 Execution Mode..........cccccevvveevennceeseciecen, 35
NEW Dala TYPES......eeereerieie e 35
Variant to VEE Data Type Conversion -
Improved Array Handling.........cccceeeeve v, 35
Updated FUNCLIONScoceiiie et 37
Related REAAING.cveeiirieieieeese e 38

2. Instrument Control Fundamentals

INtroduction tO DIreCt 1/O.....c..eeouiiieeeeceeee e 44
An Example of DIreCt [/O.....cooveeceececeesee e 44
Multilnstrument DireCt /Ococvvveeveseceese e 44

Introduction to VXIplUG& PlAYeeveeveeierieeie et 46
GELLING SEAE ... s 46
What YOU NEEU........ooiieeese et 47
Installing the VXIplug& play Driver Software..........cccccceveveenenne. 47
Location of Files (WIN95 and WINNT Frameworks)................. 47
Location of Files (HP-UX Framework)ccccoovevreeninenenieens 48
Summary of TerMINOIOGYcoveerverererieieese e 48
A VXIplug& play Example Program...........ccccoerennenenieneeneenenn 48
Further INformation...........ccooeeee e 49

Introduction to Panel Drivers and Component Drivers..................... 49
Panel DIIVELS. ..ot 49
COMPONENE DIIVENS....c.ccieiiiiiriesieieee e 50
Further Information...........cccovece v 52

Support For Register-Based VXI DeViCeS.........ccoevvininerenicneene 52

3. Configuring Instruments

Using the Instrument Managercocveveeveenieenieesiee e see e seeenes 58
OVEIVIBIW ...ttt et se et e e e seesaesneeeenaea 58
AULO DISCOVEIY ..ooviiiecitieectecte ettt e e e reesnee s 60

Contents-2

THE INSEUMENE LISt ...eeeeeeee et e e e e e e e e e e e e e e e e aeees 61

Instrument ConfigUIationcocererereerieenesenee e 63
Renaming an INStrUMENT...........ccoooveir e 65
Adding an Instrument Configurationccccceeveevieeviecienseeene, 67
Adding a Panel Driver or Component DIiVEr.........ccccovevvieeveeieennens 72
Editing an Instrument Configuration............c.ccceeverereneiesiennenn 73
Editing an Interface Configuration............c.ccoeverennenenenenenn 75
Configuring for aDirect /O ODJECtcccveririririeiirec e 76
Configuring for aVXIplug&play Drivercccocceeevieevieeviee e, 79
Configuring for a PC Plugin Card...........cccoeiivinenneeeere e 83
Details of the Properties Dialog BOXES.........ccceveevecnieeriensee e e see e 85
Instrument Properties Dialog BOXccccovvvririineniencieniseseseeseee 85
NAME FIEld......cooieeee e 86
Interface Fieldoceevececece e 86
AdAresS FIeld.....oouoieeeceee e 86
Gateway FIeld ..o 88
Advanced... BULTON..........cooieiiiiieeesese e 88
Advanced Instrument Properties Dialog Box: General Tab.............. 89
Timeout (SEC) FIeldcovviririieeeeeeee s 89
Live Mode Field.......cco e 20
Byte Ordering Field.........ccooe e 90
Description (optional) Field ..o 20
Advanced Instrument Properties Dialog Box: Direct I/O Tab.......... 91
Read Terminator Fieldccooveveeieve e 91
Write EOL Sequence Fieldccovviveirinieneneeeeeeeeeees 92
Write Multi-field ASFIeld.......cccooeiieie e, 92
Write Array Separator Field.........ccocveerice e, 93
Write Array Format Field.......ccccovoeveiiie e, 93

Write END (EOI)
On EOL Field

(1123 1) USSR 94
Conformance FIEld.........cocveieviiieceee e 95
BinbloCK FIld. ..o 95
State (Learn String) Field.......coooov e 96
Upload String Field ..o 96
Download String FIeld ..o 96

Advanced Instrument Properties Dialog Box:

Contents-3

Plug& play Driver Tab.......cccoeiireeeerese e 97

Plug& play Driver Name Field ... 97
Parametersto init() call Field......cccoeoveiieciie e, 98
Advanced Instrument Properties Dialog Box: Panel Driver Tab...... 99
ID Filename Fieldcccoooieieeeeee e 100
SUD AAAresSS FIEld......coooiiiiieece e 100
Error Checking Field........ccooieiinic e 100
Incremental Mode Field.........cccoooeveeveie i 100
Advanced Instrument Properties Dialog Box: Serial Tab............... 102
Advanced Instrument Properties Dialog Box: GPIO Tab............... 103
Advanced Instrument Properties Dialog Box:
A16 Space (VX1 ONly) Tab ...cccocvvveese e 104
Byte Access (D8) Field.......ccceeeiiiriirieceee e 104
Word Access (D16) Field ..o 104
LongWord Access (D32) Field........ccceveeveeveenceccee e 105
Add Register Fieldcooiieieieeresee e 105
Delete Register Field......cooovvieiveieeece et 106
AN EXAMPIE.....coiiec s 106
Advanced Instrument Properties Dialog Box:
A24/A32 Space (VXI ONly) Tahcccevvveeeve e, 108
Byte Access (D8) Feld......cccuvievee et 108
Word Access (D16) Fieldcooveveeveeiiese e 109
LongWord Access (D32) Field........cceveeveeveenineiee e 109
QuadWord Access (D64) Field........ocooeererienenennieiserenieens 109
Add Location FIeldccceveviiiiiee e 109
Delete Location FIield..........cccoovieiieniiii e 111
INterface Properti€Sccciv ettt nnee s 111
Interface Fieldooooeieeee e 111
AdAresS FEld ..o 111
Gateway FIeld ..o 111

4. Using Transaction 1/O

Creating and Reading TranSaCtionS...........cccuevererinenieniennesesesesie e 115
Creating and Editing TransaCtions...........cccoevvreneneneiesiesenenienens 116
Editing with Mouse and Keyboardcccccoeeevernieeveeciesneene, 116
Editingthe DataField ..o 118
Adding TEMMINAIS.......cciieieceeee e 120

Contents-4

Reading TransaCtion Data............cceeverereeeneninesieseesesesee e 121
Transactions that Read a Specified Number of Data Elements . 122

Read-To-End TransaCtions..........cccooeerereneeree e e 124
NON-Blocking REAASccceveeviiree e 126
Suggestions for Developing Transactions..........cccccevvvvveevieeneennens 129
Using Transaction-Based ODJECtS...........ccoivirreninieneneneeseseseneae 130
EXECULION RUIES.......ceeeiecie ettt 130
Object CoNfigUIAioNccueererieieierie e 130
End Of Line (EOL) Fieldcocveerireseeeeeeeee e 132
Array Separator Field........ccooveiieciece e 132
Multi-Field Format Field........cccooeiiiiieeeece e 132

Array FOrmat FIeld........ccooviiiiiiseeeee e 133
Choosing Correct TranSaClioNS...........cververiererererere e 135
Selecting Correct Objects and Transactions.........cccccveeeeveeieeceereenne 137
Example: Selecting an Object and Transaction..........c.ccccceeeeene 137

Using To String and From String........cccccceveevevieesieesee e e e 138
Communicating With FIIES ..o 139
USING FIE POINTENS ... s 139
REAA POINLEIS......cceeiiiiieseeiee e ee ettt s ee s 140
LT G = o] 1 = £ 140

(0111 T I 1= 140

EOF Data OULPUL.....ccveeeeee e ciee et see e 142
IMPOItiNG DataL.......ccceeieiiieiee e s 143
IMPOrting X-Y VEAUES.......cccovririiririienieseesese e 143
IMPOrting WavefOrmS.........cccooeveiensesee e 144
Communicating With Programs (UNIX) Rocky Mountain Basic149
Using Execute Program (UNIX)ceevveiene e 149
Execute Program (UNIX) Fields.......cccooevieviiiin e 150
Running a Shell Commandcccocvvevieive e, 152
RUNNING @ C Program.........ccccoerrenineneneeesie s 154

Using To/From Named Pipe (UNIX) ..o 155
Hintsfor Using Named PipesS.........cccoovirinenineneneccsesesie s 156
UsSiNG TO/FIrOM SOCKELccueveeivieeie et 157
To/From Socket Fields.......coovvereieieeeeee e 158

Data Organi Zationccceerereerereniesieieeeeeie e 160
ODBJECE EXECULIONceiiieiiieeeeie e 160

Contents-5

To/From Socket Object EXample.........cccoovverenenenenineneseneens 160

Using Rocky Mountain Basic Objects (HP-UX)ccccocevinnvnnene 162
Initialize Rocky Mountain BaSiC.........cccceeveeieeieeeiee e eseeeneeenes 163
To/From Rocky Mountain BaSiC.........ccceceeveeiecvieeieeseenieesieens 163
Examples Using To/From Rocky Mountain Basic..................... 164

Communicating With Programs (PC)ccccverirenenennesesesenieeas 166

Using Execute Program (PC)ccoeeieinenienieneeseee e 166
Execute Program (PC) Fields..........cccooeirineniniceee e 167

Using Dynamic Data Exchange (DDE)cccccovvvieeceeeveeneesieen, 169

DDE EXAMPIES....ccceeieee et seeree e seestee s e sre e e s e e s ese e e e see e e 173

Using Transactionsin Direct 1/0 and Interface Operations................. 176

Using the Direct 1/O ODJECLcccverereeirerererereeeesese e 177
Sending ComMMANGSccouririerieieererese et 177
REBAING DAL@.......cceriiieieieie et 180

Using the Multilnstrument Direct I/O Objectccccecvecveveenne, 181
Transaction Dialog BOXccccveveeieereereesieese e e seeseeseeneeeseeens 182
Editing TranSaCtioNScccceveeveerieesieesee et see e s 183
OBJECE MENU......eiieieieiee e 184

Using the Interface Operations ObJECt.........ccovveeeeveeieie e 184
The EXECUTE TranSaCtionccccevevieevieveseeieie e eeenee e 184
The SEND TranSactionccccoeeieereneniene e 185

5. Advanced 1/O Topics

1/0 Configuration TEChNIQUES......cccveieeiieree e 189
The I/O Configuration File..........ccoocivviiiieniececeecee e 189
Changing the Configuration File.........cccccoevivcieenieecieenee e 189
Programmatic 1/0 Configurationc.ccoerereeeeienenenene e 190
LAN GaIEBWAYS.cerieiieriieieiniee et 193
CONFIQUIBLTON ... 194
EXecution BENAVIOF ..o 196
Protecting Critical SECHIONS........c.ccevvvieeie e e 198
Supported PlatfOrms.........ccoov v 199
EXECUtion BENAVIONccviieiece e 199

Example: EXECUTE LOCK/UNLOCK Transactions - GPIB.. 201
Example: EXECUTE LOCK/UNLOCK Transactions - VXI.... 202

1/0O Control TEChNIQUES.......ccoieivie et 204

Contents-6

SEIVICE REQUESES. ...ttt 205
Monitoring BUS ACHVILY......ccccvirieeri e 208
Low-Level BUS CONLIOLccooeiiiieee e 209
Instrument Downloadingccoceerieriereiene e 210
Logical Unitsand I/0O AdAressiNgcccuerererereneseneneseseesieeeeens 212
Recommended /O Logical Unitsfor VEE ..o 212
[/O AQArESSING......ceveriiiirieieeieee e 214
To Address Serial POIS......cooco i 214
To Address GPIO DeVICES......cccoveiueeeee e 214
To Address GPIB Interfaces and DevicCes........ccceoeeevveeeenenne 215
To Address VXI Devicesonthe GPIBcccccccvevevvivecieneene 216
To Set Address/Sub Address Values........ccocveeeeveeceecieceeeesiee 217
To Addressthe VXI Backplane Directlyccccoovvneriiieinnnne 218
Excluding Address Space for the 82335 Card
(WiINdows 95/98 ONY).....ccceeieeiierier e ere e see e enee e 218

6. Using Panel Driver and Component Driver Objects

Understanding Panel Driver and Component Driver Objects.............. 223
INSide Panel DIVEN'Sccoiiieeeeeere e 223
Panel Driver Fil€S......cccov e 223
COMPONENLS......coteiiieiriee e e 223

RS == SRRSO 225

How Panel Driver-Based [/O WOrKS.........ccocoeevrieeienc e 225
Panel Driver OPEration..........cccvveeecenieeeie e e eee e eseeenee e e seeenes 226
Component Driver Operation..........cccccvceeecenieesieeereesieesseesee e 226
Multiple Driver ODJECESccveveiririerieieeeeeie s 227
Selected TEChNIQUEScoiriiieieeeeeee e 229
Using Panel Driver Objects InteraCtively.........cocoovvveroeneneneieeene, 229
Using Panel Driver Objects Programmaticallyccccccevvvvcevnenee. 229
Using Component Driver Objectsin a Program..........ccccccevvevveennee. 230
Getting Panel Driver HEIP ... 232

7. Using VXlplug& play Drivers
Using the To/From VXIplug&play ODJeCt...........ccocevvereeinenerienieienne 235

Contents-7

SEleCting @ FUNCLIONcoiiiiiieeece e 236

Editing Function Panel Parameters............c.coevereenencneniennens 238
Getting Help on aVXIplug&play DIiVer........cccceveevieveeviesennnns 243
Running a VEE Program.........ccccooieveiiieenieesee e e seesee e seee s 244

Initializing and Closing DIiVErS.........ccccievieveeccie e e 244

Advanced Initialization Information............cccceeveveeeveererennne, 244

Error and Caution Checkingcoovveerennenineeeesesiesiee 245

Passing Parameters.........cocooeeeeeiineneseeee s 246

An Example Program.........ccccccvcieverncenen e eee e enee e 248

Limitationsto VXIPIUG& PIaYccoeeverreererir e e 249

Using V XIplug& play Functions from Call Objects........c.ccccecvveennens 250
Using aDynamic Link Library or Shared Library in VEE.............. 250

IMPOrting the Libraryc.ooeeeeieneneneese e 251

Calling aVXIplug&play Driver from VEE..........ccccocvvirenenne 251

Deleting the Library ... 253

A SIMPle EXAMPIE....c.cooieiiee et 254

A More Complete EXample........cccceeveveeveenie e seesee e 255

Some Helpful HINS........ccooiiiiieeeeese e 256

8. Data Propagation

Understanding Propagatiionc..ccereneniienieesesesee s 259
HOW ODjJECLS OPEIaLeevereerieeeieesie s 259
Basic Propagation OFderocooeveerinineneseeese e 261
Pins and Propagationccccccveieevenieesie et eeeesee e e 261
Propagation of Threads and Subthreads.............cccccccovvvvevecveennenne 264
Propagation SUMMENYccoieereeieeiieereeseesee e e sreesseessesseeeseeeens 265

Propagation in USErODJECES........coeveeriririe st 267
USErODJECE FEALUES.......cueiuiieereeieieesie et 267
Contexts and USErODJECLS.......c.covrireririreeieesesie e 268
Propagation and USerObjECES.........ccccvieeiieiieeererre e e 268
Data Output from aUSerObjeCtcccccvevvvce e 270

Controlling Program FIOW.........c.ccovviieveiiecre e seesie e seee e 272
Basic Program CONtrolccoeeeirinenenreseseeeeeee e 272

CONtINUOUS LOOPScevvneeneriesie ittt sne e 274
Making Programs INteractive..........ccccvveeveeveenerscee e esee e 276
Advanced Program Control...........cccccvveevieeneevinse e e 278

Contents-8

Example: Initiating Program Tasks..........ccocevererennenenenieniens 278

Calling FUNCLIONS ...ttt 280
Clearing Strip Charts........ccooevievieeve e 282
Handling Propagation Problems..........ccceoievi v 284
(o] F=0 0 | 1 o 284
Capturing Control Pin EFTOrS.........cooviiineenenne e 285
Data Propagation on Control PiNS..........ccceoevinineneneneseseseneees 288
BUilding @RECOI........c.ooiiiriireieee s 289
Multiple INputs to @ FOrMUIAL........cccceveeriere e 292
Working With LOOPS.......cccvevieiieiieriee e sree e 293
TIMING EVENES ...ttt et e 295

9. Math Operations

Understanding Data CONtaiNEN'S.........cccevveveerieenieeserseeseeseesneeseeeseeeens 299
Data Container OPEration.........cccovreriereereeerereseeseeeee s sieeseenes 299
Terminals INformation...........cocecvveeieeie e 300

Data TYPE CONVEISIONS......ccueiereeiriesiesteeeesiesse st see s sse e e s e 302
VEE Dala TYPES...cceeeieeeiiee et etee e see e st e sree e st s sste e ennaeenneeesnenenneeens 302

Data Type DesCriptionsS.......ccoceveeveeiieeseesee e see e seeseeneee e 302
Line Colorsfor Data TYPES.....c.ceeveereereereeseesieeseeseeseesseessenns 304
VEE Dal@a Shapes.......ccceveiiriiiiieriesiese et 305
Converting Data TYPES.coiverieerireriesiesieeeesesie s see e 306
Converting Data Typeson Input Terminals...........cccecevveieiiennee 306
Converting Data Types with Objects and Functions.................. 307
Automatic Data Type CONVErSIONS......cccccueereereeereeseesesneesnnens 308
Instrument 1/O Data Type CONVErSiONScccccveeveerveeseeneennnnn 310

ProCessing DAtcccoceririeireniriesesieesese st 312
The Function & ODJect BrOWSESccceierirerineneesieesesesiesie e 312
GeNEral CONCEPLS......coueiuiieeieeiirte ettt sr e 312

Expressions and FUNCLIONS..........cccoceeveenieenieesee e 313
Using Strings in EXPressions........cccccveveeveeneeseeseeseeseeseeesneens 314
Using Variables in EXPressions..........ccoveveeveevecvieesessieesnensnens 314
Using Recordsin EXPreSSionS........coceeeererieneeneenesesiesieseeseens 316
Using Assignment OPerations...........coeoeeeeererenieneeiesesieneeseees 317
ErrOr RECOVEY ...ttt 319
Using Global and Local Variables.........cccccevvveevcecve e, 319

Contents-9

Global and Local Variablesin Assignments..........c.ccoceverenienne 320

Data Container Contents on TErmMinals..........cccoeeeerenereeniennene 321
Using DyadiC OPErators........cccoveieeieeneenieesieeseeseesseesseessesseesseeeens 322
Dyadic Operators Categori€S......cuvveierreeieeserseeereeeeeeseeeneeeses 322
Precedence of Dyadic Operators........cccuveveeveeiieeeveesieeeseeeneeenens 323
Dyadic Operators Data Type COnVersion...........ccceeeverereeseennene 323
Dyadic Operators ConSiderations.........c..coevererereneseseeseeiennens 324
Array OperationSiN VEE ... 328
Array Operations TEChNIQUES.........ccccevereieriieerieee e eie e see e e 328
Comparison of Array Operation Techniques..........ccccceevvenee. 328
Accessing ArraySin EXPressions........ccceeveeveeieeeveesieeeseesneeesnns 329
Examples: Vaues Returned from Arrayccoceveveeeicecncneenn 330
Building Arraysin EXPreSSioNnScoveverinieneeneeeseseseeseenens 331
Performing Array Math Operations...........c.ccoeeereereneneniennen. 332
BasiC Array OPerationS........cccccveveereeiieesieeneeesessieesseeseessesseessseesns 332
Array FUNCtions OPerations..........cceeveeeeereeseeseesieeseeseeseee e 332
Changing Values in an ArTayccccoeeveereeseeseeseeseeseeseeeseeeens 333
SPltting @Large ArTaYccveeeeeesieriereeieiee e 334
COMBDINING ATTAYS...cveeeeeiriesie ettt 335
Multiplying aVector by @ MatriXccocevereereniinenenieeneniens 335
Inserting Elementsinto an Arrayccccceeveeveeversieeseesseesee e 336
Converting aVector to0 aMatriXcceeveeeveevieesen e sieeee e 338
Advanced Array Operations..........ccccevveerierieeenesieeeseeeeeseeseeeneee s 339
Combining Disparate Elementsinto One Arraycocceeeeenee 339
Comparing TWO ATTAYS ...c.couererieerieniesiesieseesesie e 340
Using Alternate EXPreSSionS.........ocooeeeeeeeeriesienieeseseseeseesnens 341
Choosing Efficient TEChNIQUES.........cccoeeceevercieereeee e 342

10. Variables

ADOUL Variables.........ooeeeee e 347
About Undeclared Variablesccoceeoiiiiieiineiere e 347
About Declared Variablescooveoieeiiiiieeeee e 348
About VariablesS Namingccccecvvrireniinenenereee s 348

USING VariabIES ... s 350
Setting INitial ValUES.......cccccev i 350
Accessing Variable Valuescooovreeveciecsecse e see e 352

Contents-10

Deleting Variables ... 353
Using Variablesin Libraries.........cocoevereenennenesessesesesens 353

11. Using Records and DataSets

USING RECOITS......c.viuiiiiiesiirieiece ettt 357
Understanding Record CONtaiNErs.........cccvveeveereesieecneesieeeseesneeenens 357
ACCESSING RECOITS......cviciiiiee et es 358
Programmatically Building ReCOrds.........ccccevvvvierncieeie e 362
Editing Record FIelds. ... 363

USING DELASELS. ..ottt 365

12. User-Defined Functions/Libraries

ADOUL USEIFUNCLIONS......ocviciee ettt s 369
Converting Between UserObjects and UserFunctions.................... 369
Calling a UserFunction from an EXpressionccccoevceevieenieenenens 370

Using aLibrary of FUNCLIONS........cccevevieve e 372

Creating a UserFunction Libraryccccceceeeveevieevin s see e ese e 373
Importing and Calling a UserFunction.............ccoeveneincncncnieneenn 374
Merging USErFUNCLIONS..........coiieiiiree e 375

About Compiled FUNCLIONS.........ccoooiiiiiieeeere e 376
Using a Compiled FUNCLION..........ccccceverrinre e 376
Design Considerations for Compiled Functions..........cccccceeeevveenee. 377
Importing and Calling a Compiled Function...........cccccceveevvcevnenee. 379

The DefinitioN File.....ccoiieee e 381
Building @ C FUNCLIONccooiiiiiiiirieeeee s 382
Creating a Compiled Function (UNEX) ... 385
Creating a Shared Libraryccccvov v 386
Binding the Shared Libraryccocooveveeviincec e 386
Creating aDynamic Link Library (MS Windows)........cccccceeeenunen. 387
Creating the DLLcocviiiiiicee e 388
Parameter LimitationS.........cccoveceeeenerceee e 389
The Import Library ObJECEccovveveeieeree e 390
The Call ODJECLeeieeeeceee e e 390
The Delete Library ObjeCt.......ccovvriieevieeiee e 391
Using DLL Functionsin Formula Objects..........ccceovvnirencniennne 391

Contents-11

ADOUt REMOLE FUNCLIONS. ...t e e e eeeeee s 392

Using RemMOte FUNCLIONS.........ccoiiiriieieieescsee e 392
UNIX Security, UIDs, and NamMES.........ccccevveerierieesieeeeenieeseeeneee s 396
RESOUICE FIlES ... s 398
(0] £ 398

13. Using ActiveX Automation Objects and Controls

Using ActiveX Automation i VEE ... 401
Using ActiveX Automation ODJECES.........coerveererereriesereeesese e 402
Making Automation Objects Availablein VEE.............ccocoveienne. 402
Declaring Automation Object Variables...........cccevvviirenineiennn. 404
Creating an Automation Object in a Program............cccecevcvvinnnnene 405
Using Distributed Component Object Model (DCOM)................... 406
Getting an Existing Automation ObjeCtcccccvevieevievenvcnseeenns 407
Manipulating Automation ODJECLS...........cceererirereriresese e 408
Getting and Setting PropertieS ... 408
Calling MEthOUS.......c.coeiiiiiieieeeee e 409
USING ENUMErALioNS.........ccceeveriieiee e ee e e 410

Using the ActiveX Object BrOWSESccccevevvevnieeveecve e 411

Data Type Compatibilitycccoevieeveiiieerie e 414
Deleting Automation ObJECES.........cccuverierirererereseeseees e 423
Handling Automation Object EVENESccocvvveerenenineneeeee 423
Using ActiveX Automation CONtrolS.........ccoeeverereneneneseseseseeseens 426
Selecting ActiveX ControlS........ccoveceevervieenen e see e 426
Adding aControl t0 VEEcccooovciriieeree e sieene e 428
Differencesin the ActiveX Control HOSt..........ccooceieieenennnees 428
Using an ActiveX Control in VEE...........cccooiiiinenineneseieene 430
Using the Assigned Local Variable ..., 430
Declaring aGlobal Variable for aControlcccccevveveeinnene 430
Manipulating ActiveX Controls........cccccvevveveevieenieeseeree e seee s 431

14. Using the Sequencer Object

The SequenCer ODJECL........cceiee e 435
What is the Sequencer ODJECE?........ccvvevceve e 435
Logging TeSt RESUILS......c.ccivierieieirerie e 436

Contents-12

Using the Sequencer ODJECL..........cccvviiriere e 437

Example: Sequencer Transactions..........cccovverereeeieeieneseeseneeens 437
Example: Logging Test RESUILS.........cccoeeveeveeveeree e 442
Example: Logging to aDataSet.........cccovvveeveevcenee e 445
Example: Bin SOrtccooiiiiieieceese e 446

A. 1/O Transaction Reference

1/0O TransactionS SUMMIAIYcccveecieereereenieeseeneesseee e esseeseessesseesnseesns 457
WRITE TranSactionSccoviveeieeie ettt ettt saee b sree s 459
Path-SpeCific BENAVIOISccviiiiieeeeeee s 459
Behaviorsfor all Paths...........ccccevieece i 460

BN = G I = 1o o [o TSR 462
DEFAULT FOIMMELeeiiieeeieieeeeeerie st 464
STRING FOIMEL........eiiiieiieiieie et 465
QUOTED STRING FOrMaLcocvevieeieieseseceesie e seee e 468
INTEGER FOIMELS......cceeveieiiesieeesie e seesie e aeee s 473
OCTAL FOrMELoiiiieeeesese ettt 476

HEX FOMMEL ...ttt e 478
REAL32 and REALBA FOrMaL.........ccccoevveeeereeieeiee e 480
COMPLEX, PCOMPLEX, and COORD Formats..........c.ccoeeuu. 483
TIME STAMP FOrMELccoiviivieeienesereeie s 486

BY TE ENCOUING ...cveviiiieiiriisiesieeeeses et 488
CASE ENCOUING.....ccuiiiiriiieieiieie st 489
BINARY ENCOUING ...oocviiieeieeie ettt see et 490
BINBLOCK ENCOUING ..eeveeiveeiieeieesieeieesieese e seeveesieeseeenee e e see e 492
NON-GPIB BINBLOCKcoiiiiiieieieseieie e 492
GPIB BINBLOCKcoeeeiieieciieeerie st eee e sie e e nne s 493
CONTAINER ENCOUING.....cciiiiieriisiieie e ste e st see e sesee s 494
STATE ENCOUING ..ottt 494
REGISTER ENCOUING ..vvevieeeeieee et 495
MEMORY ENCOUING .oecoveeireeiieeieerieeieesierie e e eieesteeseeeneeeseesee e 496
IOCONTROL ENCOING......ceeiieieeieeieenierieesieeeesseeeseesnseeseesneeenees 497
READ TranSaCliONS cccceeiuieiieiteeciteeee e e snestesreesnresaeesnresreesnreens 498
TEXT ENCOGING....ctitiieieiiriisiirienieieie et 499
General Notesfor READ TEXTcovviiieveneee e 502
CHAR FOIMMAEL ...ttt e 506

Contents-13

G.

TOKEN FOMMNAL.....ccviuteeee et ee e e e e e e e e ee e
STRING FOIMEL....covuuerieeiieie e ee e e eeeee e s e e e eeeereesar s
QUOTED STRING FOrMEaLcoeceeeiieecier e seeesee e

INT16 and INT32 FOrMatS......ccoeeiveeiiieeee e
OCTAL FOIMAL......co oottt
[L G 0 1=
REAL32 and REALGBA FOrMatccovvveeireieereieeeeeeee e seeree e
COMPLEX, PCOMPLEX and COORD Formats..........cc.cuu....

BINARY ENCOUINGvoeiieieeiiirieeseeie e steeiee e ste e s sve e enseeneeens

BINBLOCK ENCOUINGcveeiveiieeienseeseeseesieesee e sreesseesseeseeeseee s
CONTAINER ENCOAINGcoceevieeiieiee e sieesee e e see e steesseesseeseeens
REGISTER ENCOUING ..ovoieicieiseeees e
MEMORY ENCOUING ...cvviviiiriiieieesie et
IOSTATUS ENCOOING ...ttt

(@1 1S A N = 015 o1 1)
EXECUTE TranSaCtioNSocoueieievereirtreeesireeessreesssvressssrese s
DetallS ADOUL GPIBcooiieeee e s
(DS r= T ESHAY (010 | AV T
WAIT TranSACtIONS....cccccvviieiieriie e eeeee e seree et e s e s sebr e e e s ssre e e e eans
SEND TranNSaCiONS.......cveeiieieieeectee e seeeee e e e e serae e e sssre e e s ssraeesssreees
WRITE(POKE) Transactions..........cccvcevvcviiesienien e enee e e seeenens
READ(REQUEST) TranSaCtioNnS.........cccccivvvveenesieenieeneenieeseeeseee s

Troubleshooting Techniques

Instrument |/O Data Type Conversions

Keysto Faster Programming

ASCII Table

VEE for UNIX and VEE for Windows Differences

About Callable VEE
USINgthe VEE RPC AP ..ottt

Contents-14

About the VEE RPC AP ..ot 572

Starting and StOPPING @ SENVENc.covvirerireeeerese e 572
Loading and Unloading aLibraryccccceevvevieevincceseeneennn, 573
Selecting USErFUNCLIONS.........ccocie et eee e e 574
Caling USErFUNCLIONS.........cccoeeiercee e 575
Other FUNCLIONS......ccciiieceeie et 575
Error Codesfor the VEE RPC APccvoieveiecee e, 577
About the VEE DATA APl ... 578
Data Types, Shapes and MappingsSccccceveeereesieeseesieenensnens 579
Scalar Data Handlingccccccveviniii v 580
Array DataHandlingccccovieeveriiee i 583
ENUM TYPES....coieeiieei et 589
MapPING FUNCLIONS........c.ccoiieieircie st 591
Other FUNCLIONS......ccoiiieeee et 591

. Index

Contents-15

Contents-16

Figures

Figure1-1. TheFile ? Save As Did0gBOX......ccocvimiiesieieeniennnnns 6
Figure 1-2. Color Map File Using Words.........ccccceevevceevesciecseesee e 10
Figure 1-3. Color Map File Using Hex Values..........ccccccvvivecieeiieennnnne, 10
Figure 1-4. Feedback in Previous VErsions.........ccccceeveeveeneecceesieesseeenns 24
Figure 1-5. Feedback in Compiled Mode..........ccccevevieeieicecneeceeseee 24
Figure 1-6. EOF DifferenCeS.....cccivevievirse et 26
Figure 1-7. Parallel JUNCLIONS........ccceeviirie e 27
Figure 1-8. INtersecting LOOPScccveviereriiecee e seesrte et ee e 27
Figure 1-9. Intersecting Loops Via Junctions..........ccccceevceveeecenieeenennnn 28

Figure 1-10. READ TEXT Transaction with TOKEN in VEE 4 Mode 33
Figure 1-11. READ TEXT Transaction with TOKEN in VEE 5 Mode 34

Figure 2-1. VEE Instrument Control Objects..........cccocvvciivivevenieenienne, 42
Figure 2-2. Using Direct I/O to Identify an Instrument...............ccc....... 44
Figure 2-3. Multilnstrument Direct I/O Controlling

Several INSITUMENES......cc.ooiieeee e 45
Figure 2-4. Using the To/From V XIplug&play Driver Object 49
Figure 2-5. Two HP3325B Panel DIiVErS.......ccccccevvevceeveeceeneesiee e 50
Figure 2-6. Combining Panel Drivers and Component Drivers............. 52
Figure 3-1. The Instrument Manager Dialog BOXcccccvevecierieecninnne. 59
Figure 3-2. The INStrument LiSt.........cccovvviieniereie e neee e 61
Figure 3-3. Collapsing the GPIB7 Interface Configuration 62
Figure 3-4. Selecting an Instrument for Configuration...........c.cccceeueee... 63
Figure 3-5. Updating the Instrument Configuration............cccccevcveenne. 64
Figure 3-6. The Instrument List after Configuring Drivers.................... 65
Figure 3-7. Changing an Instrument Name..........cccccevevvceveeenencneeneennns 66
Figure 3-8. The Renamed INStrument...........cccoeveeeveevie e cciecreeee e 67
Figure 3-9. Adding an INStrumentcccceveeviervieeve s e 68
Figure 3-10. Changing the Name and Address Fields.........ccccccvveennene. 69
Figure 3-11. The Advanced Instrument Properties Dialog Box............. 69
Figure 3-12. The Panel Driver Tabh.......ccccoevevieesen e eeee e 70
Figure 3-13. Selecting an Instrument Driver File........cccocoveveceeciecniene, 71
Figure 3-14. The Selected ID Filenamecccevcevceve e 71
Figure 3-15. The New Configurationcccccevveeveesceesescieeseeseeeseeenns 72
Figure 3-16. The Component Driver Objectcccevvvviivciecvenceeniene 73
Figure 3-17. Editing the dmm Configuration..........cc.cocevvevieeriiniieennns 74
Figure 3-18. Editing the GPIB7 Configuration...........cccccovvveverieeninnne. 75
Figure 3-19. Configuring a Seria DeVICe.......cccocvvceevcv v s 76

Contents-17

Figure 3-20. The Serial Tah.......coceveirniieriee e 77

Figure 3-21. The Direct /O Tab.......ccocvireiiirreee e 78
Figure 3-22. The Direct [/O OBJECtcccovirireiiieeeeeeesee e 78
Figure 3-23. Adding @V X DEVICE.......cccoveriererirene e 80
Figure 3-24. The Plug&play Driver Tabccoceveveiieninenineneeeeeens 81
Figure 3-25. The VXI Configuration...........ccccoeverereneneneneseseseeseeene 82
Figure 3-26. The To/From V XIplug&play Object.........ccccocvvvriiinennne 82
Figure 3-27. Example PC Pluglin Configuration............ccccoceverereennenne 83
Figure 3-28. Formula Object Created by VEE..........cccoovininiineiinenns 84
Figure 3-29. The Instrument Properties Dialog BOXcccceveverierennene 85
Figure 3-30. The General Tahcccccorrireriieeeee e 89
Figure 3-31. The Direct /O Tab.......ccocvireiiirireeese e 91
Figure 3-32. The Plug& play Driver Tabcocoovieirenineneneneeeeeens 97
Figure 3-33. The Panel Driver Tah........ccccoovirinineinenisesese e 99
Figure 3-34. The Serial Tabh.......ccocvvveriiineeeeeree e 102
Figure 3-35. The GPIO Tab.......ccocoieiiinineriiieeeese e 103
Figure 3-36. The A16 Space Tabccccvvreriirerieisie e 104
Figure 3-37. The A16 Configuration for the HP E1411B Multimeter. 107
Figure 3-38. The A24/A32 Space Tabcccoceererinineseeeeeese e 108
Figure 3-39. The Interface Properties Dialog BOXccccoovrereriennnne. 111
Figure 4-1. Default Transaction in To String Object........cccveennee 115
Figure4-2. A Program Using To String ObJECtccovvirvririennne 115
Figure 4-3. Editing the Default Transaction in To String Object ...117
Figure 4-4. READ Transaction Using aVariablein the DataField 118
Figure 4-5. wrITE Transaction Using an Expression

iNthe Data Field ... 118
Figure 4-6. Terminals Correspond to Variablesccccovrercvriennne. 121
Figure 4-7. Select Read Dimension from List........cccocevvviieicnncninn 122
Figure 4-8. Transaction Dialog Box for Multi-Dimensional Read 123
Figure 4-9. Transaction Dialog Box for Multi-Dimensional

REAO-TOENG ... 125
Figure 4-10. Using READ IOSTATUS DATAREADY for a

NON-BIOCKING REAA.........c.cririiriiicic e 128
Figure 4-11. Example: USING TO SELing .eeceeerereiemiereneeieseseneeneenes 129
Figure 4-12. The properties Did0g BOXcccccvvvririenninencnienne 131
Figure 4-13. Using the EXECUTE CLOSE Transaction............c.cccueueee. 141
Figure 4-14. Typical Use of EOF to Read aFile.........cccccovvvniiienne. 143
Figure 4-15. Importing XY ValUES..........ccvivereneicine e 144
Figure 4-16. Importing aWaveform File ... 146
Figure 4-17. Importing aWaveform File.........cccoviveninnienenicnenn 148
Figure 4-18. The Execute Program (UNIX) Object ... 150

Contents-18

Figure 4-19. Execute Program (UNIX) Running

aShell COMMEANGcoeiiiie e 152
Figure 4-20. Execute Program (UNIX) Running

a Shell Command using Read-TO-End.........c.ccooeeeveivinencnienieee 153
Figure 4-21. Execute Program Running aC Program..........c.......... 154
Figure 4-22. C Program LiStiNg........cccceerenennininienenie e 155
Figure 4-23. The To/From Socket ODJECE.....ccccvvvveeviii e, 158
Figure 4-24. To/From Socket Binding Port for Server Process....... 161
Figure 4-25. To/From Socket Connecting Port for Client Process..162
Figure 4-26. To/From Rocky Mountain Basic Settings.............. 164
Figure 4-27. The Execute Program (PC) ODJeCtccocevvvririeienene 167
Figure 4-28. The To/From DDE ODJECEcevvvvvevieriesieeiee e 170
Figure 4-29. The To/From DDE EXampleccccocvininiinienincniene 171
Figure 4-30. Execute PC before To/From DDE..........cccccovviiriienienne 172
Figure 4-31. I/O Terminals and To/From DDE............cccoovininininienne 172
Figure 4-32. Lotus 123 DDE Example.........ccocevvirinineneiieeeineieeee 173
Figure 4-33. Excel DDE EXample.......cccoivireininienine e 173
Figure 4-34. Reflections DDE EXample........cccocvvivenenenneneninenieens 174
Figure 4-35. Word for Windows DDE Example.........cccocecevienienenienene 174
Figure 4-36. WordPerfect DDE EXample........c.ccoccvverenennenienenenienens 175
Figure 4-37. Configuring for Learn Strings..........ccooeeevennencenienenienens 180
Figure 4-38. Multilnstrument Direct I/O Controlling

Several INSIIUMENTScc.oiviieiiiierereeeeee e 182
Figure 4-39. Entering an Instrument Addressasa Variable................. 183
Figure 5-1. Function and Object BrOWSEYcccveirerineienennieennnns 191
Figure 5-2. Create Set FormulaDialog BOXcccccvririienencrinennennn. 192
Figure 5-3. Programmatically Reconfiguring Device I/O.................... 193
Figure 5-4. Gateway Configuration...........ccceeeererienereneeseseseneeeas 194
Figure 5-5. Examples of Devices Configured on Remote Machines...195
Figure 5-6. EXECUTE LOCK/UNLOCK Transactions- GPIB........... 201
Figure 5-7. EXECUTE LOCK/UNLOCK Transactions- VXI............ 202
Figure 5-8. Instrument Event Configured for Seria Polling................ 205
Figure 5-9. Handling Service REQUESES...........cccvvirenierienreseseeie e 206
Figure 5-10. The BUS [/O MONIOXccoiririieeiesisesese s 208
Figure 5-11. Two Methods of Low-Level GPIB Control...................... 209
Figure 5-12. Example: Downloading to an Instrumentccccceeee 211
Figure 6-1. Accessing Driver COMPONENtSccoceeereerenesereneeneeens 224
Figure 6-2. TWO VOItmeter SLALEScoceviriereieire e 225
Figure 6-3. Using Panel Drivers and Component Drivers.................... 231
Figure 7-1. To/From VXIplug&play ObjeCtcceverierereriririnieees 235
Figure 7-2. Select a Function Panel Dialog BOXcccvevriniireeee. 236

Contents-19

Figure 7-3. Panel Tab of Edit Function Panel Dialog BoX................... 238

Figure 7-4. Parameter Tab of Edit Function Panel Dialog Box 240
Figure 7-5. Selecting the Auto-Allocate Input Feature............ccee..... 242
Figure 7-6. A Program Using To/From V XIplug& play Objects.......... 248
Figure 7-7. Simple Example: Using V XIplug&play Drivers............... 254

Figure 7-8. More Complete Example: Using V XIplug& play Drivers. 255
Figure 8-1. The at+b Object Propagates When Both Inputs Have Data259
Figure 8-2. Controlling Propagation Using a Sequence Input Pin....... 260

Figure 8-3. Controlling Propagation Using the XEQ Pin............c........ 260
Figure 8-4. Pins Available on ObjeCtS.........ccevivirenenencnsisesee e 262
Figure 8-5. A Program with Two Parallel Threads............cccocevivinnee 264
Figure 8-6. A Program with Two Parallel Subthreads......................... 265
Figure 8-7. UserObject FEaIUNES...........cccuririieiriiercisesseese e 268
Figure 8-8. Data Propagation from a UserObject...........ccccovvrerervennnne 270
Figure 8-9. A Simple LOOP COUNLESccoerieererierienieseereeesie e 273
Figure 8-10. A Simple Nested Loop COUNLEN..........ccocvverereriereeeenes 273
Figure 8-11. A Simple ContinUOUS LOOPccceveeeerienirienieniesesesieae 274
Figure 8-12. Stopping a ContinUOUS LOOPcccrvereeeeneenenirienerienene 275
Figure 8-13. Using If/Then/Else to Stop a Continuous Loop............... 276
Figure 8-14. Using the Until Break Loop to Select a

Program’s SUBLNrEad............ooveiiiiiiicic e 277
Figure 8-15. Using the Until Break Loop to Detect an

INstrument’s Service REQUESE...........cooerereerenie e 279
Figure 8-16. SRQ SEtliNgS........cerervereerereriesienieeeeee e 280
Figure 8-17. Clearing SRQ........coveieiririse st 280

Figure 8-18. Using the Until Break Loop to Call a UserFunction 281
Figure 8-19. Using the Until Break Loop to Control a

Strip Chart’s Data COlECHIONoveverieriieieeerese e 282
Figure 8-20. Using the Until Break Loop to Handle Error Conditions 284
Figure 8-21. The Incorrect Way to Capture Control Pin Errors........... 286
Figure 8-22. Error Dialog BOXcccevieriirieniiieeeiee e 287
Figure 8-23. A Correct Way to Capture Control Pin Errors................. 288

Figure 8-24. Sequencing Problems on Objects with Control Pins....... 289
Figure 8-25. Using the Sequence Input on Objects with Control Pins. 289
Figure 8-26. Invalid Data I nputs Stops Propagation on

Build ReCOrd in @L00Pc..oiveririiiirierie et 290
Figure 8-27. Maintaining Propagation When Data Inputs are Invalid . 291
Figure 8-28. Maintaining Propagation by Preventing

INValid Data INPULS.......c.coiiirierieieieeie e 292
Figure 8-29. Invalid Data Inputs Stop Propagation on a
FOrmMUIAIN @LO0Pceieieirierierieeeee e 293

Contents-20

Figure 8-30. Using a Variable to Prevent Invalid Data Inputs

ON A FOMMUIALciiiieeeecee e 294
Figure 8-31. Uncontrolled Timer Inputs can Cause Timing Errors......295
Figure 8-32. Using the Do Object with Timer for Accurate Results....296
Figure 9-1. VEE Automatically Converts Data Types as Needed........ 299

Figure 9-2. Left-Click aLineto View Its Data Container 300
Figure 9-3. Initializing a Declared Global Variable............cc.cccvveunne. 321
Figure 9-4. Generating an Array Using Individual Objects.................. 328

Figure 9-5. Generating an Array Using a Mathematical Expression....329
Figure 9-6. Using an Assignment Expression to Change

ATTAY VBIUBS. ...ttt 334
Figure 9-7. Reorganizing Vauesin aLarge Array

USING 8N EXPreSSIONccuiiiiiieiesiesiisiesie sttt 334
Figure 9-8. Combining Two Arrays Using an Expression 335
Figure 9-9. Multiplying a Vector Array by aMatrix Arrayc........ 336
Figure 9-10. An Expression that Inserts Elements

INtO @N EXIStING ATTQY .eoeeeiriirieieieees et 337

Figure 9-11. Using a Loop to Insert Elements into an Existing Array .337
Figure 9-12. Converting a One-Dimension Array to Two Dimensions338

Figure 9-13. Collecting Maximum Values from Many Arrays............ 339
Figure 9-14. Comparing Valuesin TWO ArTayS........ccccevvenereneeneenns 340
Figure 9-15. Finding Transition Pointsin an Array of Values............. 343
Figure 10-1. A Variable Example........ccccccoveiniinciniiieccc e, 350
Figure 10-2. Setting Array ValUES..........cooeruenriirinenienee s 351
Figure 10-3. Accessing a Variable Multiple Ways..........ccocvvvverenienee 352
Figure 11-1. Example: A Record Containercccuvevvreenerenrenennen. 358
Figure 11-2. Retrieving Record Fields with Get Fieldcccceueee. 359
Figure 11-3. Using Array Syntax in Get Fieldc.ccocveieieiicnene, 360
Figure 11-4. Retrieving Record Fields with UnBuild Record.............. 361
Figure 11-5. The Effect of Output Shapein Build Record................... 362
Figure 11-6. Mixing Scalar and Array Input Data...........ccocevvrerenienne 363
Figure 11-7. Using Set Field to Edit aRecord............c.cccveciniinniennne. 364
Figure 11-8. Using To DataSet to Save a Record...........ccoecvvevnicnenne. 365
Figure 11-9. Using From DataSet to Retrieve a Record............ccc.e..... 366
Figure 12-1. Calling a UserFunction from Expressions............cccc..... 370
Figure 12-2. Creating UserFunctions for aLibrarycccccceenvrienne. 373
Figure 12-3. Importing a UserFunction Libraryc.cccccvvviviienienne 374
Figure 12-4. Using Import Library for Compiled Functions................ 379
Figure 12-5. Using Call for Compiled FUNCLiONS..........cccocvvirerieniennee 380
Figure 12-6. Program Calling a Compiled Function............ccccceeeueee. 385
Figure 12-7. Import Library for Remote Functions.............c.ccoceeeniennee 393

Contents-21

Figure 13-1. Selecting ActiveX Automation Type Libraries............... 403

Figure 13-2. Declaring an ActiveX Automation Variable................... 404
Figure 13-3. Specifying the Automation Object Type........ccccovvervennene. 405
Figure 13-4. Using the ActiveX Object BroOWSerccccooverereriennene 411

Figure 13-5. Elements Displayed in the Function & Object Browser.. 412
Figure 13-6. Create Event Handler UserFunction browser ...424

Figure 13-7. Selecting ActiveX CONtrolS.........c.cveverenennencneneneenne 427
Figure 13-8. Adding ActiveX Controlsfrom the Device Menu........... 428
Figure 13-9. Accessing Properties and Help in an ActiveX Control ... 429
Figure 14-1. Example: Sequencer Transactions..........cccceevvvrenereennenns 437
Figure 14-2. test1 Sequence Transaction Dialog BOX.........ccccceveeeunee. 438
Figure 14-3. test2 Sequence Transaction Dialog BOX.........ccccceeveeenee. 439
Figure 14-4. EXEC Transaction Dialog BOXc.cccvevineviininiennnns 439
Figure 14-5. Running the Programcccceeeenenenenenescsesese e 440
Figure 14-6. A Logged Record of RECOIdScccovevreeienicriencniennes 441
Figure 14-7. Example: Logging Test RESUILS.........cccovverenerienieieienne 442
Figure 14-8. A Logged Array of Records of Records..........c.cccceeveuee. 443
Figure 14-9. Analyzing the Logged Test ResUltS..........ccccovrereriennnne 444
Figure 14-10. Example: Logging to aDataSetcc.cvvreieereenerennn 445
Figure 14-11. Bin Sort EXample........ccocviiiniinineneneeesese e 447
Figure 14-12. test] TranSaCtionccccveveriirienienieesese s 447
Figure 14-13. teSt2 TranSaCtioncccovereriirieneeieesesie s 448
Figure 14-14. Improved Bin Sort EXample.........cccoeverinieneneneennne, 449
Figure 14-15. Improved testl TranSactionccoceevevneeenineneennes 450
Figure 14-16. Improved test2 TransaCtionc.ccoeveveerenenesieneeneenns 451
Figure 14-17. global Ohms Transaction............ccceveerenenenienesesesene 452
Figure A-1. A WRITE TEXT TranSaCtion.......cccccceoeiiriereneniesenieneennens 464
Figure A-2. TWOWRITE TEXT STRING Transactions..................... 465
Figure A-3. TWO WRITE TEXT STRING Transactions................... 466
Figure A-4. A WRITE TEXT STRING Transaction..........c...cccueeennes 466
Figure A-5. TWO WRITE TEXT STRING TransaCtions................... 467
Figure A-6. TWO WRITE TEXT QUOTED STRING Transactions........ 469
Figure A-7. TWOWRITE TEXT QUOTED STRING Transactions........ 469
Figure A-8. A WRITE TEXT QUOTED STRING Transaction.............. 470
Figure A-9. TWOWRITE TEXT QUOTED STRING Transactions........ 470
Figure A-10. A WRITE TEXT QUOTED STRING Transaction............ 472
Figure A-11. TWO WRITE TEXT INTEGER Transactions................. 474
Figure A-12. A WRITE TEXT INTEGER Transaction 475
Figure A-13. TWO WRITE TEXT INTEGER Transactions................. 475
Figure A-14. A WRITE TEXT OCTAL Transaction.........ccccecervervenne 477
Figure A-15. A WRITE TEXT OCTAL TranSaCtion.........c.ccceeneennnas 478

Contents-22

Figure A-16. A WRITE TEXT HEX Transaction ..., 479

Figure A-17. A WRITE TEXT HEX TransaCtionccccceeevvereneniennns 480
Figure A-18. Three WRITE TEXT REAL TransactionsS..........cccoceeeeneee 481
Figure A-19. Three WRITE TEXT REAL TransactionsS..........cccoceeeenee 482
Figure A-20. Three WRITE TEXT REAL TransactionsS..........cccoceeenee 482
Figure A-21. A WRITE TEXT COMPLEX TransaCtion.........c.cccoceeeenee 484
Figure A-22. TWO WRITE TEXT PCOMPLEX Transactions................. 485
Figure A-23. A WRITE TEXT PCOMPLEX Transactionc........ 485
Figure A-24. TWO WRITE BYTE TranSactionsS.........cccceveeererireeennnne 489
Figure A-25. TWO WRITE CASE TranSactionsS..........ccoeeeereiireeennene 489
Figure A-26. Quoted and Non-Quoted Data...........ccceeveeeceeniecireenenn, 505
Figure A-27. READ TOKEN Data.......ccccovvvriririiiniiniciseesce s 508
Figure A-28. READ TOKEN D@l@.......ccoueereriririeieienesie s 510
Figure A-29. READ TOKEN D@l@.......ccoveeririiriinieieiesesie s 511

Contents-23

Contents-24

Tables

Table 1-1. Manual Contents DeSCriptions........cccccceeveeieeneeseeeneesieeenee e 3
Table 1-2. Instrument [/O SUPPOI........ccoverieriereireeieeereeseeesveeseeeseeeseeens 16
Table 1-3. VEE Versions and Execution MOdES...........ccoevveervveecnnnnns 18
Table 2-1. Comparing Instrument Control Objectsin VEE 43
Table 2-2. Location of WIN95 and WINNT Framework Driver Files...47
Table 2-3. Location of HP-UX Framework Driver Files..........cc.coce..e. 48
Table 3-1. ESCape CharaClerScocvviiveiiercieereesieesieerieesee e e sreesreesseesneens 92
Table 4-1. Editing Transactions With aMouse..........ccccceveveceerecnnennn, 116
Table 4-2. Editing Transactions With the Keyboardcccccue.nee.. 117
Table 4-3. Typical DataField ENtriescccccceveevevve e 119
Table 4-4. EScape CharaCters ccovevceeveesin e e e esee e e seee s 120
Table 4-5. Summary of Transaction-Based Objects ccceeeeevunenne 135
Table 4-6. Summary of Transaction TYPES evvcvvcvvceciecree e 136
Table 4-7. Objects and Sources/Destinations.........ccccevveeeeecieeneenenenn 139
Table 4-8. Programs and Related Objects (UNIX).....cccvveviceeneeninnne 149
Table 4-9. Range of Integers Allowed for Socket Port Numbers......... 159
Table 4-10. Programs and Related Objects (PC).....ccccevvvvevvieeveecneenn, 166
Table 4-11. Summary of EXECUTE Commands

(Interface OPErations).......ccccceeieerreereeieese e ee e e s e e e sree e e sree s 185
Table 4-12. SEND Bus Commands............cceeerverreereneeireeseeeeeeeneene 186
Table5-1. EXECUTE LOCK/UNLOCK SUPPOItcoveneerereeniereeeenene 199
Table 5-2. Recommended 1/0 Logical Units.........cccocvvcvrceeeieeneenennn, 213
Table 9-1. VEE Data TYPES.....cccverierrierreesieeieeeeeseeseeesreeseesseesseeseesens 303
Table 9-2. Promotion and of Data TYPES......cceceeveeveevienee e 309
Table 9-3. Escape Sequences CharaCters........covvvvvveeenieeieesieeseeesennns 314
Table 13-1. Converting from Automation Scalar Data

Typesto VEE Data Types in VEE 6 Execution Mode.................... 414
Table 13-2. Converting from Automation Scalar Data

Typesto VEE Data Types in VEE 5 Execution Mode.................... 416
Table 13-3. Converting from VEE Data Types to

Automation Scalar Data Typesin VEE 6 Execution Mode............. 417
Table 13-4. Converting from VEE Data Types to

Automation Scalar Data Typesin VEE 5 Execution Mode............ 419
Table 13-5. Converting from Automation Array Data

Typesto VEE Data Types in VEE 6 Execution Mode.................... 419
Table 13-6. Converting from Automation Array Data

Typesto VEE Data Types in VEE 5 Execution Mode.................... 421

Contents-25

Table 13-7. Automation Data Type Modifiers........ccoovveveeerininenienens 422

Table A-1. Summary of I/O Transaction TYPES........cecvrerererierieneennas 457
Table A-2. Summary of 1/O Transaction ObJECESccvvrererierienne 458
Table A-3. WRITE Encodings and FOrmats...........coceeerennenenenienienens 460
Table A-4. Formatsfor WRITE TEXT TransaCtionS.........cocceeeveveverennne. 463
Table A-5. ESCape CharaClersS ..o 472
Table A-6. SIgN PrefiXeS ... 475
Table A-7. OCLAl PrefiXES......oviiiiiii ettt r e e s eree e 477
Table A-8. HexadeCimal PrefiXesS.....c..vvvvvcveev e 479
Table A-9. REAL NOALIONScooiveiieieee et e st e s 481
Table A-10. PCOMPLEX Phasg UNitScocccveiiiciiie e eeeee s 485
Table A-11. Time and Date NOELONS.......cvevvvcvie e 488
Table A-12. HP 98622A GPIO Control LinNeS........ccoceevvveevveeeveeeineenns 497
Table A-13. READ Encodings and FOrmMats...........coeoereinencnenienienens 498
Table A-14. Formatsfor READ TEXT TranSactionS.........coeeeevveeversnuns 500
Table A-15. Characters Recognized as Part of an INT16 or INT32: ... 516
Table A-16. Suffixes for REAL NUMDESSoovcvviviecieie e 522
Table A-17. TOSTATUS VAUESoooveieeeee ettt 530
Table A-18. Summary of EXECUTE Commands.........ccccceeevvvrvennene. 532
Table A-19. EXECUTE ABORT GPIB ACLONS.......ccecveeeeeeeee e 537
Table A-20. EXECUTE CLEAR GPIB ACLONS.....c.cccoecveeeieieee e 537
Table A-21. EXECUTE TRIGGER GPIB ACIONSccoovvvieiereieeere e 538
Table A-22. EXECUTE LOCAL GPIB ACHONS.......coecveeeeeeeee e 538
Table A-23. EXECUTE REMOTE GPIB ACLIONS.......cccoveveievireeeeeee e, 538
Table A-24. EXECUTE LOCAL LOCKOUT GPIB Actions........ccco........ 539
Table A-25. EXECUTE CLEAR VXI ACHONS.....cccoeviveeiie e 540
Table A-26. EXECUTE TRIGGER VXI ACHONSovvvcveriieiire e 540
Table A-27. EXECUTE LOCAL VXI ACHONS.....ccoevieeeie e 540
Table A-28. EXECUTE REMOTE VXI ACHIONS.....cccvevevereieiere e 541
Table A-29. SEND BUS COMMANGS........c.ceeiveereereeirie et e e 545
Table B-1. Instrument Control Troubleshooting...........ccccovvvriicniennee 548
Table B-2. VEE TroubleShooting...........ccoeeeirinineneesese e 550
Table E-1. ASCII 7-Dit COOES.......ocoveeeeeieieieeeee e 560

Contents-26

| ntroduction

I ntroduction

This chapter provides an introduction to this manual and to VEE, including:

About This Manual
Configuring VEE

Using VEE Example Programs
Using Library Objects
Supported 1/0 Interfaces
Using V EE Execution Modes
Related Reading

2 Chapter 1

Introduction
About This Manual

About This Manual

This manual provides detailed information about the advanced features of
VEE. Table 1-1 briefly describes the manual contents.

Table 1-1. Manual Contents Descriptions

Chapter Description

1 - Introduction Shows how to use VEE example programs
and library objects.

2 - Instrument Control Explains five methods for communicating
Fundamentals with instruments.

3 - Configuring Explains four methods to configure VEE to
Instruments communicate with instruments.

4 - Using Transaction I1/0O | Explains all VEE 1/O objects that use
transactions.

5 - Advanced I/O Topics Explains 1/0 configuration and addressing.

6 - Using Panel Driver Describes how to use Panel Driver and

and Component Driver Component Driver objects with VEE.
Objects

7 - Using VXIplug&play Explains how to use a VXIplug&play driver to
Drivers communicate with an instrument.

8 - Data Propagation Describes how to produce programs using

data propagation between objects.

9 - Math Operations Describes math operations on scalars and
arrays.
10 - Variables Describes variables in VEE.

11 - Using Records and Describes the Record data type and the
DataSets DataSet.

12 - User Defined Describes 19 categories of built-in functions
Functions and Libraries and explains UserFunctions.

Chapter 1 3

Introduction
About This Manual

Table 1-1. Manual Contents Descriptions

13 - Using the Sequencer | Provides guidelines for using the Sequencer
Object object.

14 - Using ActiveX Explains how to use ActiveX automation and
Automation Objects and controls in VEE.
Controls

4 Chapter 1

Color and Font
Settings

Introduction
Configuring VEE

Configuring VEE

This section gives guidelines to configure and customize VEE for your
environment by changing V EE options and X 11 options (in the UNIX®
environment) or Windows options (in the MS Windows® environment).

Configuring VEE for Windows

VEE for Windows uses the Windows Registry to store VEE environment
information. You can change many VEE window propertiesin the VEE
Default Preferences dialog box (Use File = Default
preferences). These properties are saved in the defaultsfile VEE . rRC in
the following directory:

$userprofile%\LocalSettings\Application Data\Agilent\VEE
Pro

or in $HOMES, if it isdefined.

InVEE 6.0, the save colors & fonts with program Selection no
longer appearsinthe befault Preferences diaog box. You can save
colors and fonts with the program by choosing File = Save As. Figure 1-1
shows the new save File dialog box.

Chapter 1 5

Customizing Icon
Bitmaps

Selecting a Bitmap
for a Panel View

Introduction
Configuring VEE

Save File 7| x|
Savein | ‘il VEE Pro6.0 -l & @ i [EE
hitmaps: [P
examples
ids
include
Lib
matlab
File narme: | Save I
Save as ype: IVEE Frograms [*.vee] =] Cancel |
Options
[™ Save colors and fonts with program
™ Save /0 configuration with prograrm

Figure 1-1. The File = Save As Dialog Box

For colors and fonts, only the settings you change are saved in the VEE . RC
defaultsfile. See How Do I inVEE Help for more information about
changing colors and fontsin VEE.

You can change the icon displayed for any iconized object to a bitmap or
pixmap. VEE provides many files, or you can create your own. VEE for
Windows supports 24-bit . BMP bitmap files, .cIF87, .GIF89a, .PNG
(Portable Network Graphics), WMF (Windows Meta Files), and . 1¢N icon
files. To select an object’sicon, click the object menu's Properties feature,
then use the Icon tab on the Properties dialog box.

You can create your own bitmaps for object icons using any editor that
outputs graphics formats that V EE supports, such as MS Windows paint.
You should specify 48x48 asthe size for anicon. Larger icons use more
space in the VEE program area while smaller icons are difficult to see. You
can also use screen capture utilities such as print Screen with Paint.

You can select abitmap to use as the background icon for apanel view. This
appliesto UserObjects and to V EE programs displayed in their panel views.

6 Chapter 1

Color and Font
Settings

Changing X11
Attributes (UNIX)

Introduction
Configuring VEE

Panel view icons must use the formats V EE supports. You can also useicons
you create, as described in the previous paragraph.

To select a bitmap as the icon for a panel view, enable the panel view so the
Panel and Detail buttons appear in thetitle bar (by adding an object to the
panel). Click the object menu, then click Properties. Usethe panel tab
onthe properties dialog box to choose a bitmap.

Configuring VEE for UNIX

InVEE 6.0, the save colors & fonts with program Selection no
longer appearsinthe befault Preferences diaog box. You can save
colors and fonts with the program by choosing File = Save As. Figure 1-1
shows the new save File dialog box.

The color and font settings you change in VEE are saved in the defaultsfile
.veerc in your SHOME directory. For colors and fonts, only the settings
you change are saved in this defaults file. See How Do I inVEE Help for
more information about changing colors and fontsin VEE.

On UNIX platforms, VEE supports . bmp (bitmap), .gif, .icn (icon), and
.xwd (X11 bitmap) files. You can create your own bitmaps for object icons
using any editor that supports graphics formats that VEE supports, such as
the IconEditor program on HP-UX. You can aso use screen capture
utilities such as X11 Window Dump (xwd) on UNIX.

VEE provides an app-defaults file named vee that you can use to customize
several attributes of VEE. Thisfileisin opt /veetest/config/ for HP-
UX 10.20. In the same directory is the app-defaults file named Helpview,
which lets you customize the appearance of your Help windows.

To usethesefiles, you must install them into your X 11 resources database. If
you are using xrdb, install thefiles by typing xrdb -merge filename
for each file before starting VEE. If you are not using xrdb, merge the files
into your X11 resources file. Your X11 resourcesfileis usually
.Xdefaults inyour sHOME directory, but may bein afile identified with
the environment variable $XENVIRONMENT.

To change other X 11 resources, change or add to your X 11 resources file.
For example, to change the default geometry of the VEE window so that it

Chapter 1 7

Screen Colors
Change (UNIX)

Introduction
Configuring VEE

aways starts in the lower right corner of your screen and is sized to 640 by
480 pixels, add the following line to your X 11 resources file (probably
.Xdefaults):

Vee*geometry: =640x480-0-0.

For more information about customizing an X11 environment, see the
Beginner’s Guide to the X Window System.

Your workstation is equipped with a certain number of color planes (usually
1, 4, 6, or 8). X11 uses the information in these color planesto color your
application’s window.

If you have more than one application running (each in its own window) and
you notice the screen colors changing as you move from one application’s
window to another, one of two things may be happening. Either all the
applications together use more colors than your display has available, or one
or more of the applications allocates its own private color map (for example,

Rocky Mountain Basicl).

VEE uses at least 39 colors (this varies depending on how you define the
colors and which colors VEE actually uses while running) so you may
experience this behavior when VEE is one of your applications.

The symptoms are that when you are in the VEE window, the VEE colors
will be correct for VEE but may be wrong in other application’s windows.
When you move to another application’s window, the colors will be correct
for that application but may be wrong for VEE. Thisistypical X11 behavior
-- itisnot a problem with VEE.

This behavior does not affect the performance of VEE or any other
application. However, there are some things you can do to correct the
situation.

Attempt to Use Too Your workstation can display some number of colors at one time, based on
Many Colors (UNIX) the number of color planes for your display. This number is:

2number of color planes

1. Rocky Montain Basic was formerly known as HP BASIC/UX.

8 Chapter 1

Applications that
Use a Local Color
Map (UNIX)

Introduction
Configuring VEE

For example, if you have 4 color planes, you can use as many as 16 colors at
atime on your display.

=16

If you exceed this number, you may see the screen flashing as you change
from one window to another.

If you exceed your total available colors, the first step in eliminating the
"flashing" is to reduce your colors to be within the limits of your
workstation. Some tips on reducing colors are:

B Remove any extra colors. If two applications can use the same color
scheme, customize them to do so.

B Use reduced-color color schemesin applications. Click File =
Default Preferences.Inthebefault Preferences diaog box,
change your default colorsto use only afew colors.

B Stop any applications you do not need. Each application may useits own
color scheme. This can quickly increase your requested colors to exceed
your color map limit. If you stop other applications, you probably need to
re-start VEE to see the change.

B Reduce the number of colors allocated by the xinitcolormap
command. Because these colors remain permanently in the color map,
there is room for fewer temporary colors.

Some X 11 window managers have a colormap focus directive (for example,
*colormapFocusPolicy). Thisvalue may affect how colors are used on
the screen. If you exceed the total number of colors you can simultaneously
display and thisvalueissetto explicit, you may not seecorrect colorsin
your application’s window.

Some applications use alocal color map. When you run such an application
it saves the current color map and switches over to its own local color map.
When this happens you may see the "flashing" between windows.

One way to circumvent thisisto pre-allocate the VEE colors using the
xinitcolormap command. To do this, create an ASCII filelisting the

Chapter 1 9

Introduction
Configuring VEE

colors you want to pre-allocate. Thisfile is described in the man page for
xinitcolormap.

Thefile cannot contain blank lines and must start with the colorsB1ack and
Wwhite. Thecolor format can be either pre-defined words or RGB hex
values, preceded by the symbol #. For example, Figure 1-2 and Figure 1-3
contain examples of black, white and a shade of light gray:

Black
White
LightGray
Figure 1-2. Color Map File Using Words

#000000
#EFEEEFE

#a8a8a8
Figure 1-3. Color Map File Using Hex Values

Rocky Mountain Basic is one application that uses alocal color map and
recommends that you pre-all ocate the Rocky Mountain Basic colors at
startup using the xinitcolormap command. Seethe

/opt/rmb/newconfig/rgb.README file for details.

To pre-allocate VEE colors:

1. Create a"colormap" file that contains all the different VEE colorsyou
will use.

2. Changeto your $HOME directory:
cd S$HOME
3. Concatenate the Rocky Mountain Basic and the VEE colormap files:

cat /opt/rmb/newconfig/xrmbcolormap vee-colormapfile >
.xveecolormap

The Rocky Mountain Basic colors must go first because Rocky Mountain
Basic assumes that they are thefirst 16 entriesin the colormap. You can
mix word colors and hex number colorsin onefile.

10 Chapter 1

Note

Introduction
Configuring VEE

4. Placethe xinitcolormap command near the beginning of your
.x11start file. This command must execute before you allocate any
colorsfor other applications.

For example, if your colorsarein $HOME/ . xveecolormap and you
have 55 colors listed in the file (16 from Rocky Mountain Basic + 39
from VEE), add the following lineto .x11start:

/opt/X1l/xinitcolormap -c¢ 55 -f S$SHOME/.xveecolormap

5. Restart X11. To do this, stop the window manager by pressing
Shift+Ctrl+Break or selecting Reset from your root menu, then type:

xXllstart

Using Non-USASCI | Keyboards (UNIX)

If you are using a non-USASCII keyboard, you need to modify the SLANG
variable in your X 11 environment. To use a German language keyboard,
enter the command in the Korn shell:

export LANG=german.iso88591

When the LANG variableisset, use File = Default Preferences to
change fonts.

If you are accessing data that was created with the Romang character set, you
must translate any special characters (above ASCII 127) used.

Your terminal window may use Roman8. Therefore, TEXT written to stdout,
file names (such as specified by To File and From File), and programs
names must use ASCI| characters 0-127 to match with those specified with
VEE.

Using HP-GL Plotters (UNIX)

V EE supports graphics output to plotters and files using HP-GL. Before you
can send plotsto a plotter (either local or networked) your system
administrator must add the plotter as a spooled device on your system.

Chapter 1 11

Introduction
Configuring VEE

In addition to standard HP-GL plotters, such as the HP 7475, the HP
ColorPro (HP 7440), or the HP 7550, some printers, such as the PaintJet XL
and the LaserJet 111, can be used as plotters. The HP ColorPro plotter
reguires the Graphics Enhancement Cartridge to plot polar or Smith Chart
graticules or an Area-Fill line type. The PaintJet XL requiresthe HP-GL/2
Cartridge in order to make any plots.

To make plots on the LaserJet |11 requires at least two megabytes of optional
memory expansion, and the Page Protection configuration option should be
enabled. Plots of many vectors, especially with Polar or Smith chart
graticules, may require even more optional memory. Any plot intended for a
printer requires the plotter type to be set to HP-GL/2, which causes the
proper HP-GL/2 setup sequence to be included with the plot information.

Any of the following graphical two-dimensional displays can be plotted to
an HP-GL or HP-GL/2 plotter, or to afile:

XY Trace

Strip Chart
Complex Plane

X vs Y Plot

Polar Plot
Waveform

Magnitude Spectrum
Phase Spectrum
Magnitude vs Phase

You can specify the appropriate default plotter configuration by selecting:
File = Default Preferences. Selectthe Printing tabinthe
Default Preferences dialogbox and click thePlotter Setup button
toeditthe Plotter Configuration dialog box.

To generate aplot directly from a display object, select P1ot onthedisplay’s
object menu, specify the required parametersinthe plotter
Configuration dialog box, and press ox.

You can also add p1ot asacontrol input to generate plots programmeatically.
The entire view of the display object will be plotted and scaled to fill the
defined plotting area, while retaining the aspect ratio of the original display
object.

12 Chapter 1

Introduction
Configuring VEE

By re-sizing the display object you can control the aspect ratio of the plotted
image. By making the display object larger, you can reduce the relative size
of the text and numeric labels around the plot.

For an explanation of the plotter configuration parametersin the plotter
Configuration dialog box, seethebefault Preferences Sectionin
Objects and Menu Items under Reference inVEE Online Help.
Also, see the reference sections for the appropriate two-dimensional display

devices.

Chapter 1 13

Introduction
Using VEE Example Programs

Using VEE Example Programs

VEE includes many example programsto help you understand how it works.
The example programs are installed as part of the VEE installation process.

The Example Directories
The default directory for examplesis:

For Windows;

C:\Program Files\Agilent\VEE Pro 6.0\examples\
For VEE for HP-UX running on HP-UX 10.20:

/opt/veetest/examples/

The examples referenced in this manual are included in the Manual
subdirectory, with file names like manual01 . VEE, etc. Other examples not
referenced in this manual are available in other subdirectoriesto illustrate
specific VEE concepts or to illustrate solutions to engineering problems.

Running the Examples

You can load and run example programs using the Help menu, as follows:

1. Click Help = Open Example onthe menu bar. This presentsalist of
subdirectories that group similar examples together. (You can aso use
File = Open = Examples to load VEE examples.)

2. Double-click the desired subdirectory to see the programsin that group.

3. Scroll through thelist until you find the desired example.

4. Click the example name, then click ox to open the program. You are
prompted to save the any existing program in the work area.

5. To run the program, press the rRun button on the tool bar.

14 Chapter 1

Introduction
Using Library Objects

Note

Formula Objects

Using Library Objects

VEE aso includes alibrary of objectsthat you can **Merge" into your
programs. The library objects are installed as part of the VEE installation
processin the following directory:

For Windows:
C:\Program Files\Agilent\VEE Pro 6.0\Lib\

For HP-UX 10.20:
/opt/veetest/lib/

Most library objects are UserObjects that encapsulate individual objects.
You can create UserObjects for the library and save them.

In Windows, save your UserObjectsin:

C:\Program Files\Agilent\VEE Pro 6.0\Lib

In HP-UX, save your UserObjectsin:
/opt/veetest/lib/contrib/

In HP-UX, the contrib subdirectory provides a place for your own library
of "contributed" objects.

You must be root user to writeto the 1ib directory on HP-UX platforms.

Formula abjects that you can merge into your program are also available.
Each of these objects performs a useful conversion function, such as degrees
to radians.

In Windows, the files are located in:
C:\Program Files\Agilent\VEE Pro 6.0\Lib\convert\
In HP-UX 10.20, they are located in:

/opt/veetest/lib/convert/

Chapter 1 15

Introduction
Supported I/O Interfaces

Supported I/O Interfaces

Before VEE can communicate with instruments, the computer running VEE
must be properly configured and the I/O libraries must be installed as
described in Installing the Agilent 10 Libraries - VEE for Windows or
Installing the Agilent IO Libraries - VEE for HP-UX. Also, see“Logical
Unitsand I/O Addressing” on page 212 inthismanua for logical unit

and 1/0 addressing information.

Table 1-2 lists the supported I/O interfaces for each platform.

Table 1-2. Instrument I/O Support

Platform Supported I/O Interfaces
Windows 95/98 GPIB?
(PC, HP 6232, HP 6233, EPC7/8) Serial
GPIO
vXIP
Windows NT GPIB?
(PC, HP 6232, HP 6233, EPC7/8) Serial
GPIO
VXIP
HP-UX GPIB?
(HP 9000 Series 700, V/743) Serial
GPIO
VXI©

a. Can address VXI devices using HP E1406 Command Module.

b. Direct backplane access for embedded controllers: HP 6232 or HP 6233
VXI Pentium® Controller, HP RADI-EPC7/8 VXI Controller, or RadiSys
EPC7/8 VXI Controller. Direct backplane access for external PCs using

VXLink.

c. Direct backplane access for HP V/743 VXI Embedded Controller. Direct
backplane access for external Series 700 using HP E1489C EISA/ISA-to-

MXIlbus interface.

16

Chapter 1

What is an
Execution Mode?

Introduction
Using VEE Execution Modes

Using VEE Execution M odes

This section gives guidelinesfor using VEE Execution Modes,
including:

B Setting Execution Modes

B Execution Mode Changes: VEE 3 to VEE 4
B Execution Mode Changes: VEE 4 to VEE 5
B Execution Mode Changes: VEE 5to VEE 6

Setting Execution Modes

Each version of VEE has several Execution Modes (formerly Compatibility
Modes). This allows anewer version of VEE to run programs created with
an older VEE version exactly the same way the older VEE ran them. Thisis
known as "backwards compatibility", and all version of VEE are 100%
backwards compatible using Execution Modes. Version 6.0 of VEE adds the
VEE 6 Execution Mode.

VEE Version 4.0 had two Execution Modes: VEE 3.x and VEE 4. This
allowed VEE 4.0 to run old programs created with VEE Version 3.0 (or
prior) in the exact same way the programsran in VEE Version 3. If you want
torun aVEE 3 program in Compiled mode, you switch modes and then VEE
4 runs your program using the Compiler.

In the same manner, VEE Version 5.0 had three Execution Modes, VEE
3.x,VEE 4,andVEE 5.InVEE Version 6.0, VEE 6 Execution Modeis
added to the list. When a program created with an older version of VEE is
brought into VEE, the program knows what Execution Mode it used. When
VEE loads that program, VEE putsitself into that corresponding Execution
Mode so the program will run exactly asit did in the older version of VEE.

Once a program is written and saved with a Execution Mode, the program
retains that Execution Mode unless changed by the user. If you developed
and saved a program in Version 5.0, the program is saved with Execution
Mode VEE 5. If you then load the program in Version 6.0 and save it, the
program still has Execution Mode VEE 5. Unless you change the Execution
Mode (using the Default Preferences Dialog Box or other means), the

Chapter 1 17

Why should | want
to change Execution
Modes?

How do | know when
to change Execution
Modes?

Introduction
Using VEE Execution Modes

Execution Mode does not change for the program, no matter which version
of VEE loads the program.

To change a program’s execution mode, open the Fi1e menu and select
Default Preferences. When the Default Preferences dialog box opens,
click the diamond next to the execution mode you want to apply to the
program. Save the program or click ox.

You should change Execution Modes if you add new features to an existing
program. For example, if you add new features, such as new data types
availablein VEE 6, to a program written in VEE Version 5.0 (with
associated Execution Mode VEE 5), you should change the Execution
Modeto VEE 6. If you change the program but do not change the Execution
Mode, the new features added to the program may not run properly.

In most cases, programs written in previous versions of VEE will run 100%
as long as the Execution Mode is not changed. However, you may not be
ableto run new features unless the latest Execution Mode is used.

Table 1-3 shows the combinations of programs that will run for various
versions and Execution Modes. Note that old programs will run in any
version as long as the Execution Mode is not changed. The only potential
problem occurs when the Execution Mode is switched.

Table 1-3. VEE Versions and Execution Modes

Program Created in Execution Mode:
Running in VEE: VEE 4 VEE 5 VEE 6
Version 4.0 runs CNA* CNA*
Version 5.0 runs runs CNA*
Version 6.0 runs runs runs

*CNA means Compatibility Not Assured. Programs created on later
versions of VEE might load and run on earlier versions of VEE, if they do
not include any features unique to the later version. Programs which take
advantage of newly added features will not run correctly on older versions of

18 Chapter 1

Guidelines to
Switching Execution
Modes

About the Compiler

Note

Introduction
Using VEE Execution Modes

VEE. In some cases, the programs may not even load into older versions of
VEE.

The point of Execution Modesisto assure that existing programswill run on
newer versions of VEE. There is no assurance that new features will run on
old versions of VEE.

You should use VEE 6 Execution Mode when you develop new programsin
VEE 6.

You can run any existing VEE program by selecting the applicable
Execution Mode (VEE 3 for VEE 3.x programs, VEE 4 for VEE 4.x
programs, or VEE 5 for VEE 5.x programs). The appropriate mode for older
programs is automatically set when the program is loaded.

If you switch to VEE 6 Execution Mode, an old program may or may not
run correctly. Most programs will run correctly. See the following example
for a"bug fix" that may cause a program to run differently.

Suppose you have a Version 5.0 program (Execution Mode VEE 5) which
includes a To File that doesaWRITE BINARY BY TE transaction. In
Version 5.0 (and prior versions), you could send "300" into this and get "44"
written to the file. (Thisistechnically a defect because "300" does not fit
into abyte, and this should have errored instead of truncating 300 to 44.)

In Version 6.0 with VEE 5 and prior Execution Modes, you still get 44" to
preserve program compatibility. However, in VEE 6.0 with VEE 6
Execution Mode you get an error message saying V EE cannot convert 300to
auInts (out of range). See “Execution Mode Changes: VEE 5 to VEE 6”
on page 35 for alist of changes from VEE 5 to VEE 6 execution mode.

To use the compiler and include ActiveX automation and controls, set
Execution Mode tOVEE 6. If you want to convert

VEE 3 programsto VEE 6 mode, you should make sure they work in
VEE 4 and vEE 5 modesfirst, asthere are some program execution
differences between each maode.

It is not necessary to understand the information in this section to use the
compiler. This section explains the concepts behind the compiler for your

Chapter 1 19

Introduction
Using VEE Execution Modes

information only. Information about the compiler appliesto VEE 4 and
higher modes, except for minor changes.

The compiler works with programsthat run in vEE 4, VEE 5, Of VEE 6
modes. The VEE compiler converts aV EE program into p-code, but thereis
no machine language or executable generated.

The compiler allows VEE to:

B Predict at compiletime (instead of determining at run time) the order of
execution of objects

B Determine what data types will be flowing on certain data lines
B Optimize code generation
B Generate and execute the most optimal p-code for any given VEE object.

V EE programs compile transparently when you press the run button.
Stepping and breakpoints are fully supported, aswell as Show Execution
Flow, Show Data Flowand Line Probe.

Subseguent runs of the same unmodified program do not require
recompilation. When a program is modified only the contexts needing
recompiling are recompiled (much like an incremental compiler). Most
programs benefit from the use of the compiler, though the actual resultsvary.
For example, aprogram using many levels of nested loops may see a greater
speedup than one that does alot of 1/0 or screen updates (e.g., displays).

In compiled mode, iterators and formulas gain the most execution speed
benefit. A program written with an previous version of VEE may not run
exactly the same way with the compiler. This could be due to specific
programming techniques, use of undocumented side-effects, or even slight
changes in documented behavior.

20 Chapter 1

Line Colors in
Compiler Mode

Potential
Compatibility
Problems

Introduction
Using VEE Execution Modes

Execution Mode Changes. VEE 3to VEE 4

V EE programs written with versions before VEE 4.0 run exactly the same as
they used to whenrunin vEe 3 mode. To ensurethis, the interpreter is
automatically enabled upon loading of older programs. This section
describes the new functions and enhancementsin VEE Version 4.0, that is,
in VEE 4 mode.

In compiler mode, VEE assigns different colors to the data lines that connect
objects based on the type of data flowing through theline. The default colors
are listed below, along with the names of the color properties. You can
changetheminthebefault Preferences diaog box, selected from the
File menu. Choose theline you want to change in the Screen Element box,
click on the Color Value box to open the color palette, and click on the color
you prefer. Click ox to keep the new color for the selected line type.

B Dark Sky Blue:numeric (Integer or Real type)

Dark Sky Blue:complex (Complex and PComplex type)

Med Orange:string (String type)

Med Dark Gray:sequence out (nil value, usually from a sequence out
line)

Magenta:highlight

Black:unknown type or type that is not optimized (for example, Record
types).

If the datatypeisan array, VEE displays awider line. To increase speed,
check your program for colored lines. The more non-black lines, the faster
the program runs.

Programs written in versions before VEE 4.0 automatically runin VEE 3
mode. Programs written using VEE 4.x automatically runin vEE 4 mode.
Programswritten using VEE 5.x automatically runin vEE 5 mode. You can,
however, change the Execution Mode Of aprogram at any time.

Compatibility problems could arise in certain areas when changing an
existing program from vEE 3 to VEE 4. The following paragraphs explain
the potential problem areas. The information about using older versions of
VEE isthe same aswhen using interpreted mode or vEE 3 mode. (If you are
creating new programs, you should use VEE 6 Execution Mode.)

Chapter 1 21

Introduction
Using VEE Execution Modes

Time-Slicing User Functions. In versions before VEE 4.0, UserFunctions
did not time-dlice with other parts of the program. In compiled mode,
UserFunctions will time-slice when called from separate threads. Be sureto
use sequence pins between cal1 objects when parallelism is not desired.

UserFunctions only time-slice when called from call, Formula, I£/
Then/Else, Of Sequencer Objects (only when called from the Function
field). Breakpoints also now work in UserFunctions when called from cal1l
or the other objects listed above.

UserFunctions will not time-slice, nor will breakpoints work, when called
fromaTo File, To String,or sSimilar objectsor if theformulaissupplied
viaacontrol pin.

If aUserFunction is executing and gets called again from ancther part of the
program, that call will be blocked until the original call returns.

User Objects. UserObjects would always time-slice in previous versions,
but in compiled mode they will only time-slice when invoked from separate
threads.

Function Precedence. The precedence of functions called from the
Formula object has changed to the following:

1. Internal functions (like sin () and totSize())

2. Local UserFunctions

3. Imported UserFunctions

4. Compiled Functions

5. Remote Functions

InvEE 3 Execution Mode, internal functions are last in precedence. This

alowed you to override internal functions such as totsize () or £ft ()
with your own.

Auto Execute and Sart. There are some subtle changes in behavior when
using the auto Execute feature of certain objects. In compiled mode, the

22 Chapter 1

Introduction
Using VEE Execution Modes

behavior isasif the object was hooked directly to a start object and that
Start button was pushed. This change does not affect most programs.

OK Buttons and Wait for Input. Most asynchronous objects like the ox
object or any object withwait for Input enabledwill work betterin
compiled mode in these two areas:

B Stepping: In previousversions, stepping over such an object would often
result in the termination of the program. In compiler mode, stepping
works properly.

B CPU usage: In previous versions, executing such an object usually
resulted in increased CPU usage. In compiler mode, the CPU staysin
anidle state.

Collectors Without Data. In previous versions, pinging the xeQ pin of a
Collector that has never been pinged with data outputs anil container. In
compiler mode, if the datatype is known at compile time, you get a zero-
element array of that datatype. Otherwise, you get a zero-element array of

type Integer.

This change alows the type inferences to be more consistent, producing
better p-code downstream from the collector object. Note that
totSize () of anil producesaone, while totsize () of azero-element
array produces a zero.

Sample & Hold Without Data. In previous versions, pinging the XeQ pin
of asample & Hold object that has never been pinged with datayields a
nil container. In compiler mode, the following error is generated (error
number 937):

Sample & Hold was not given any data.

This change allows the type inferences to be more consistent, producing
better p-code downstream from the sample & Hold object.

Timer Object. In previous versions, the Timer object output an undefined
result if the Time2 pin (the bottom data input pin) was pinged before the
Timel pin. In compiler mode, the Timer object generates an error if the
pins are executed out of sequence.

Chapter 1 23

Introduction
Using VEE Execution Modes

Feedback Cycles. In compiler mode, a Junction object isrequired inside
afeedback cycle. start objectsare no longer required. The following error
is generated when feedback without a Junction is detected (error number

935):

A Junction isrequired inside of feedback cycles. See Figure 1-4 and
Figure 1-5.

—|For Count| - = Formula | -

[[_,ﬁ A+B Mm

Figure 1-4. Feedback in Previous Versions

—IFor Count| -

ITT

—'||”tE-EIEV| | ﬂ ja+B Result
I T ot —

= Formula =

Figure 1-5. Feedback in Compiled Mode

24 Chapter 1

Introduction
Using VEE Execution Modes

VEE Version 4.0 and higher does not allow invalid connections, such as an
object’s data input pin connected to its data output pin or, for most objects,
connecting a sequence output pin to adatainput pin.

Parallel Threads. In VEE 3 Execution Mode, independent threads would
round-robin between each thread, meaning that one object will be executed
in one thread, then an object in the other thread, etc. In compiler mode, this
behavior is not guaranteed.

L oop Bounds. To increase looping performance, the bounds of iterators
(such asthe step fieldin aFor Range oObject) are examined only at the
beginning of the first iteration and not at every iteration. The object’s fields
are grayed at run time to show the value is not changeable. Datainputsto the
iterators will beignored if the value changes while the loop is running

For example, if the step value of aFor Range oObject ischanged viathe
data input pin while theloop runs, it isignored in VEE 4 and higher
Execution Maode. In previous versions, the step value would have been
checked on every iteration.

User Objects and Calls With XEQ Pins. In versions before 4.0, you could
have an xEQ pin on aUserObject or acall object run the UserObject or
UserFunction before all the data input pins were satisfied. The behavior of
objectsinside the UserObject or UserFunction connected to those unpurged
data inputs was undefined. In vEE 4 and higher Execution Mode, thisis not
allowed. xEQ pins on those objects will generate an error. You can no longer
add an xEQ pin to those objects.

OK Buttons With XEQ Pins. In versions before 4.0, an ok object with an
XEQ pin was only executed once, when either the ox button was pressed or
when the xEQ pin was sent data. In VEE 4 and higher Execution Mode, the
OK button executes every time the xEQ pin is sent data. You can no longer
add an XEQ pin to an oK object.

From File With EOF Pins. In versions before 4.0, the data output pin on a
From File object wastreated differently from other data output pinsin

Chapter 1 25

Introduction
Using VEE Execution Modes

VEE. If the From File wasinaloop, the data on the output pin remained
valid when the EoF data output pin was executed.

InvEE 4 and higher Execution Mode, the data output from aFrom File
object isinvalidated each time the loop executes (just like on all other
objects). Therefore, when the EOF pin is executed, the data output is already
invalid and cannot propagate.

Figure 1-6 illustrates this situation. In versions before 4.0, the datafed into A
on the Formula would have remained valid even while another iteration of
the loop executed. To get valid data fed into B on the Formula, the EOF pin
(on the bottom) executes and then the Formula executes.

InvEE 4 and higher Execution Mode, the datafed into A isinvalidated as
soon as the next iteration of the loop begins. Because Formula does not get
valid inputs on the same iteration of the loop, it never executes.

To File
TI —| AlphaMumeric | «

Until Break
—| Farmula =
From File | 5| | 2] Result |

—[Real] <] Break|
|12

Figure 1-6. EOF Differences

Parallel Junctions. In versions before VEE 4.0, if you had unconstrained
objects that were connected in parallel to Junction objects, the order that
you made the connections affected the execution order. In VEE 4 and higher
Execution Mode, the order of connection does not matter, as Figure 1-7
shows.

26 Chapter 1

—|For Count| =

[o0

—|Integer| |

|D— i

Introduction
Using VEE Execution Modes

JcT

=] Formula | «|
ﬁ |a+t:| Result

JCT J_|

Figure 1-7. Parallel Junctions

I nter secting L oops. In versions before 4.0, you could intersect iteration

objects. The execution order was undefined, but was affected by the order

the connections were made. In VEE 4 and higher Execution Mode, only
loops that intersect viaa Junction object are allowed. Any other
intersecting loops generate error 938. VEE was unable to compile
this part of the program. Figure 1-8 shows this situation.

—|For Count| =

[2

—| Logging Alphakumeric | «

—|For Count| =

.

LB
[

e

Formula | «|
E*El Result

1

Figure 1-8. Intersecting Loops

Chapter 1

27

Introduction
Using VEE Execution Modes

Inter secting L oops Via Junctions. In versions before VEE 4.0, the
example shown in Figure 1-9 would execute the Integer first. When the
program encountered the Break it would stop. In VEE 4 and higher
Execution Mode, the example below runsthe For count objects after the
Integer Objects because the Break does not stop the program.

—| Integer | «|

ﬁ_______.___

—| For Count | -

I 10
—| JCT | 4] = rA=B |4
ﬂ 1 IE:»D Then ||
—| Counter | « B | | Data| A | Else Else l
¢ Break |

C0 =

—| For Count | - —| Counter | «

|T—f{—-|f

Figure 1-9. Intersecting Loops Via Junctions

Open View Object Changes. Inversionsbefore VEE 4.0, you could change
the datain open view fields while the program was running or paused. These
changes would affect program behavior and the result was not guaranteed. In
VEE 4 and higher Execution Mode, many objects do not allow this type of
modification when the program is running or paused (the input fields are
grayed). Some examples of this are;

Formula and If/Then

Collector

All Transaction objects’ transactions

Get Mappings and Set Mappings

Get Values and Set Values

Constant’spropertiessuch assetting Scalar Or 1D Array, Wait for
Input, Or Auto Execute.

Setting propertieslike Clear at PreRun

UserObject and UserFunction Trig Mode

28 Chapter 1

About the VEE 5
Execution Mode

Converting
Programs to VEE 5
Execution Mode

Introduction
Using VEE Execution Modes

B Dialog Boxes properties

Adding or deleting input or output terminals on objectsis grayed at run time
(but not when paused). If this action is done at pause time, the program is
stopped (asin versions before VEE 4.0).

Array Syntax in Expressions. Expressions with array syntax entered
without commas, suchas [1 2 31, will be reparsed when the program loads
and automatically modified to use commas, asin [1, 2, 31. Thisistruefor
programsin VEE 3 and VEE 4 modes.

Execution Mode Changes: VEE 4to VEE 5

InVEE 6.0, the VEE 4 and VEE 3 modes retain their compatibility
definitions set in VEE 4.0, which are described in “ Execution Mode
Changes. VEE 3 to VEE 4” on page 21. There are minor changes that will
not affect existing programsthat run in their original execution modes (VEE
3 Or VEE 4). These changes are important to know if you plan to convert
programs from older to newer modes.

The VEE 5 Execution Modeis a superset of the vEE 4 mode. The VEE 5
mode retains the compiler features described previously and introduces
significant changes affecting program compatibility. Most of the changes
enable support for ActiveX automation and controls.

Other changes may impact your programming techniques if you use any of
the features described in this section, even if you do not use ActiveX. For
information about using ActiveX in VEE, see Chapter 13, “Using ActiveX
Automation Objects and Controls.”.

Old programs will automatically open in the appropriate old execution
mode. If you want to change older programsto a newer mode, you must do
thismanually using befault Preferences under the file menu. When
you change aprogram to VEE 5 mode, errors can occur. A list appears
explaining problems. You need to fix these errors before VEE 6.0 accepts
the switch to VEE 5 mode. VEE 6.0 does not automatically revise any part
of your program to fix the errors.

Chapter 1 29

VEE 5 Execution
Mode Changes

Note

Introduction
Using VEE Execution Modes

To help you know how to fix errors, the VEE 5 mode compatibility changes
are described below.

If you want to change VEE 3.x programsto VEE 5 mode, you should be sure
they work in VEE 4 mode first and then change them to VEE 5 mode. See
“Execution Mode Changes: VEE 3 to VEE 4" on page 21 for help with that
conversion.

Menu Changes. As part of the ActiveX support added to VEE 5.0, the
Device menu has changed dightly. These new menu items have been
added:

ActiveX Automation References...
ActiveX Control References...
ActiveX Controls

Also, themenuitemMath & Functions that openedthe select
Functions dialog box, isnow called Function & Object Browser and
opensthe Function & Object Browser. You still useit the same way to
select math operators and functions for a program, and its expanded
functionality supports ActiveX.

Expressions. The following changes affect objects that contain expressions,
such as Formula:

B SET and ByRef are new keywords that are used for ActiveX automation.
They are reserved and cannot be used as names for terminals.

B New syntax is supported for ActiveX automation such as
excel .worksheets (1) .cells(1,2) = 2.

B InVEE 3 and VEE 4 modes, expressions with array syntax entered
without commas, suchas [1 2 3], arereparsed when the program loads
and automatically modified to use commas, asin [1,2,3].InVEES
and higher modes, entering array syntax without commas, suchas [1 2
31 will cause an error when Formula losesfocus.

B A valuesuchasi1 returnsan INT32, 1.0 returnsaREAL64. Previoudly,
both returned aREAL64.

30 Chapter 1

Introduction
Using VEE Execution Modes

B There are two new built-in functions for ActiveX automation:
CreateObject () and GetObject ().

B There are two new built-in constants for ActiveX automation:
true and false.

Variables. The following changes affect variables:

B WhenDelete Variables at PreRunisturnedon (inDefault
preferences), globa variables are not deleted if they reference
ActiveX controls.

B TheDeclare Variable object hasanew variable type called Object
which is used for ActiveX automation.

B The new Object variable type is aso available on input terminals as a
Required Type, though it cannot be coerced from or to another type.

Global Namespace. Global namespace rules have changed, which affects
names given to variables, functions, and libraries in the following ways:

B [oca UserFunctions, Library names, global declared and undeclared
variables, and local-to-library declared variables are now all in the same
name space and must have unique names. This affects existing programs
if they contain more than one instance of a name. For example, you
cannot have a UserFunction and a declared globa variable both named
daily results. Thiswill cause an error when you switch the program
to VEE 5 mode.

B WithinaLibrary, local UserFunctions and local-to-library declared
variables are in the same namespace and must have unique names. This
will cause an error when you switch the program to vEE 5 mode, or if
you import a Library containing conflicting namesinto avEe 5 mode
program.

Chapter 1 31

Introduction
Using VEE Execution Modes

B New syntax isallowed in the Formula object in al modes, such as

lib.func(a,b) = RightHandExpr

This parses correctly in all modes. However, it executes correctly only in
VEE 5 and higher mode and causes arun-timeerror in VEE 3 and VEE 4
modes.

The changes in globa namespace rules also change the order of precedence
used in vEE 5 and higher mode to the following order when VEE looks up
variable and function names used in a Formula:

1

2.

Local input/output terminals.
Declared local-to-context variables.

Declared local-to-library variables when inside a UserObject context
nested in a UserFunction context.

Global declared and undeclared variables, local UserFunctions, Library
names, which all must be unique names.

Built-in functions, such assin () and totSize ().

ActiveX controls and automation constants depending on which libraries
have been referenced using Instrument = ActiveX Automation
References Of ActiveX Control References. For example,
many constants exist in Excel’s automation library, such as
x1Maximized).

Imported UserFunctions, Compiled Functions, and Remote Functions
appear in random order. To guarantee getting the correct one, include the
imported Library’s name, asinmyLib. func ().

An unlikely example of how this new order can cause an older program to
faill might involve a Formula containing the expression sin (90) with a
data input terminal (avariable) named sin. In VEE 3 and VEE 4 modes,
VEE ignores the input terminal name and callsthe sin () built-in function.

32

Chapter 1

Introduction
Using VEE Execution Modes

However, VEE 5 and higher mode uses the new precedence order to look up
the function and variable names. So VEE 6.0 looks up the termina name,
assumes it has an ActiveX object on the input, and triesto call the object’s
default method. An expression that callsan ActiveX object’s default method,
cells(1,1),issimilartosin(90). For information about ActiveX, see
Chapter 13, “Using ActiveX Automation Objects and Controls.”

READ TEXT Transactions. In VEE 3 and VEE 4 modes, the READ TEXT
transaction using the TOKEN format with EXCLUDE CHARS does not advance
the read pointer to exclude the specified character. Figure 1-10 shows an
example of thisin VEE 4 mode:

= Text =]

|The first phrase * the next phrase * the end

= AlphaMurmeric F
The first phrase

—| From String =

® = AlphaMumeric P
; READ TEXT y TOKEN EXCLUDE"" T |
ASIING | (*0EAD TEXT 2 5TR e

Z
= AlphaNumeric =

* the next phrase * the end

Figure 1-10. READ TEXT Transaction with TOKEN in VEE 4 Mode

Thisisan unexpected result. An expected result is for each phrase separated
by the excluded character "*" to appear in separate AlphaNumeric
displays, as shown inthe vEE 5 mode examplein Figure 1-11.

Chapter 1 33

Using VEE 5 Mode
in HP-UX

Introduction
Using VEE Execution Modes

= Text =]

|The first phrase * the next phrase * the end

= AlphaMurmeric F
The first phrase

—| From String =

READ TEXT x TOKEN EXCLUDE""

® = AlphaMumeric P
¥ the next phrase
Z

ASHING| | £ eap TEXT 2 TR

= AlphaMurmeric F
the end

Figure 1-11. READ TEXT Transaction with TOKEN in VEE 5 Mode

Interaction Between To/From File and To/From DataSet.|InVEE 3
and VEE 4 modes, aprogram usingaTo File Of From File object with
the EXECUTE REWIND transaction to accessthe same datafileasaTo
DataSet Of From DataSet Object can cause unexpected interactions.
More specifically, if aprogram uses From File (With EXECUTE REWIND)
to read data from afile, then uses To Dataset to write data back into the
same file, the data can be written incorrectly.

A similar interaction can happen when using From DataSet With To
File.InVEE 5 and higher mode, this unexpected interaction isfixed so the
dataiswritten to the file correctly. However, we still do not recommend
Mixing To/From File With To/From DataSet oOperationson the same
file.

Since VEE 5 mode provides ActiveX support for Windows only, there are
some conditions to be aware of. In VEE for HP-UX, you can put programs
into vEE 5 mode. This affects the global namespace, as described
previously. However, the ActiveX automation menu items will not appear
since ActiveX is not supported on HP-UX.

If you develop aprogram using V EE for Windows that uses ActiveX
features, it can cause errors or not run properly if you move the program to
an HP-UX system. If the program calls V EE functions supporting ActiveX
automation (CreateObject () and GetoObject ()), the program will cause

34 Chapter 1

About the VEE 5
Execution Mode

New Data Types

Variant to VEE Data
Type Conversion -
Improved Array
Handling

Introduction
Using VEE Execution Modes

an error. Programs that declare Object variable types will load into VEE for
HP-UX, but they will not run properly.

Execution Mode Changes: VEE 5to VEE 6

InVEE 6.0, the VEE 4 and VEE 3 modes retain their compatibility
definitions set in VEE 4.0, which are described in “ Execution Mode
Changes: VEE 3 to VEE 4" on page 21. There are minor changes that will
not affect existing programsthat run in their original execution modes (VEE
3 Or VEE 4). These changes are important to know if you plan to convert
programs from older to newer modes. They are described below.

The VEE 5 Execution Modeis a superset of the vEE 4 mode. The VEE 5
mode retains the compiler features described previously and introduces
significant changes affecting program compatibility. Most of the changes
enable support for ActiveX automation and controls.

Other changes may impact your programming techniquesif you use any of
the features described in this section, even if you do not use ActiveX. For
information about using ActiveX in VEE, see Chapter 13, “Using ActiveX
Automation Objects and Controls.”.

Intl6,Real32, Variant, and UIntg are new datatypesfor VEE 6.0. All
new datatypes and new transactions such asWRITE TEXT INT16 appear in
al Execution Modes. However, new transactions behave the old way in old
modes.

For example, in VEE 5 mode, WRITE BINARY INT16 actually does a
WRITE BINARY INT32 and will not convert thedatato an Int16. In VEE
6 mode, WRITE BINARY INT16 does convert datato an 1nt16. See

“ Setting Execution Modes’ on page 17 for ways that the VEE Execution
Mode could change program behavior.

When data are returned from an ActiveX Automation Server (such as Excel)
or an ActiveX control, VEE must convert the automation datatypesto VEE
datatypes. With VEE 5.0, an array of Variants converted into aVEE Record.
With VEE 6.0 (in VEE 6 Execution Mode), an array of Variants converts
into a VEE array if all elements are of the same data type. (For mixed data
types, there is no change from VEE 5.0 behavior.)

Chapter 1 35

Note

Introduction
Using VEE Execution Modes

If al elements of an array are of the same data type, mapping of Variant data
type to VEE array datatypeis asfollows.

Thisfeatureisavailablein VEE 6 Execution Mode only.

Variant array VEE 6.0
member type data type
VT_Ull Uint8
VT_BOOL Int16
VT_I2 Int16
VT_UI2 Int16
VT_l4 Int32
VT_Ul4 Int32
VT_R4 Real32
VT_R8 Real64
VT_DATE Real64
VT_CY Real64
VT_BSTR Text
VT_DISPATCH Object

However, there are still some gaps in this compatibility between new VEE 6
datatypes and ActiveX automation servers.

B Datatypessuch asBoolean (VT _BOOL), Date (VT_DATE),
Currency (VT_CY), and Error (VT_ERROR) do not have built-in
VEE data type counterparts. Use of these data types with "ByRef" in
ActiveX is supported with the Set functions and Query functions
described below.

B Certain special Variant values such as Empty (VT_EMPTY) and NULL
(VT _NULL) have no equivalent and cannot be uniquely identified.

Set Functions. The Set functionstell VEE that during ActiveX automation
operations the containers returned by these functions will be given special
treatment.The set functions are:

asVariantBool()
asVariantCurrency()
asVariantDate()

36 Chapter 1

Updated Functions

Introduction
Using VEE Execution Modes

asVariantError()
asVariantEmpty()
asVariantNull()

Query Functions. Query functions are used on containers created from the
return values of automation methods and properties. The Query functions
are:

isVariantBool()
isVariantCurrency()
isVariantDate()
isVariantError()
isVariantEmpty()
isVariantNull()

The following functions have been updated for VEE 6.0.

whichOS() — updated with return values of "Windows 98" and
"Windows_2000".

createObj ect() — updated with an optional second parameter that specifies
the name of aremote host computer.

Chapter 1 37

Introduction
Related Reading

Related Reading

For more detailed information about instrument control topics discussed in
this manual, refer to the following publications.

Tutorial Description of the Hewlett-Packard Interface Bus
(Hewlett-Packard Company, 1987), part number 5021-1927.

This document provides a condensed description of the important
concepts contained in IEEE 488.1 and |EEE 488.2. If you are unfamiliar
with the IEEE 488.1 interface, thisis the best place to start.

|EEE Sandard 488.1-1987, IEEE Sandard Digital Interface for
Programmable Instrumentation (The I nstitute of Electrical and
Electronics Engineers, 1987).

This standard defines the technical details required to design and build a
GPIB (IEEE 488.1) interface. This standard contains electrical
specifications and information on protocol that is beyond the needs of
most programmers.

|IEEE Sandard 488.2-1987, IEEE Sandard Codes, Formats, Protocols,
and Common Commands For Use with ANSI/IEEE Sd 488.1-1987 (The
Institute of Electrical and Electronics Engineers, 1987).

This document describes the underlying message formats and data types
used by instruments that implement the Standard Commands for
Programmabl e Instruments (SCPI).

|EEE Sandard 728-1982, |EEE Recommended Practice For Code and
Format Conventions For Use with ANSI/IEEE Sd 488-1978, etc. (The
Institute of Electrical and Electronics Engineers, 1983).

38

Chapter 1

Introduction
Related Reading

B VMEbus Extensions for Instrumentation, including: "V XI1-0, Rev. 1.0:
Overview of VXlbus Specifications' and "V XI-1, Rev. 1.4: System
Specification," VXlbus Consortium, Inc., 1992.

B HP VISA User’s Guide (Hewlett-Packard Company, 1998), part number
E2090-90035.

This document is useful for users who create their own V XIplug& play
drivers and provides additional information about addressing and using
VXIplug&play drivers.

Chapter 1 39

Introduction
Related Reading

40 Chapter 1

| nstrument Control Fundamentals

| nstrument Control Fundamentals

VEE supports five types of objects for controlling instruments.

Figure 2-1 shows each of these objectsin its open view. Each of these
examples communicates with an HP E1410A VXI Multimeter, except the
PC Plugln card driver object.

—| DMMZ (hpel1410a @ 16028) =

WRITE TEXT ""IDN?" EOL

Direct /0 Object —

—| To/From DMM2 =
ToiFrom Plug&play hpet1d410 read QinstrHandle, readings)
Object —8m — readings |
—| DMMZ (hpel1d10a @ 16028) =

Multimeter

Panel Driver
e, | MG Volts oC

Simulated Data

Function DC Voltage

READING

Peading Mode Single Reading
Signal source

Instrument Options Trigger Options

Component Driver |—| DMM2 (hpeld10a @ 16028) | «|
Object —— | READING

PC Plugln Card =] Formula (Analogin) =
Driver Object — 1 Ch ’TemnSensor.AlnSingle(Ch. Byrefval) Result
Wal

A val

Figure 2-1. VEE Instrument Control Objects

42 Chapter 2

Instrument Control Fundamentals

Table 2-1 gives an overview of the differences between these instrument

control objects.

Table 2-1. Comparing Instrument Control Objects in VEE

Card Driver

Note

supplied by the instrument
manufacturer.

can be used by
multiple software
applications.

VEE Object Instrument Access Main Benefits Supported
Interfaces?

Direct I/O Communicates directly with Fast I/0. Can GPIB, Serial,

any instrument. control any GPIO, VXI, and
instrument. LAN.

To/From Requires a VXIplug&play Fast I/0. Drivers GPIB, VXI, and

VXIplug&play | driver supplied from the can be used by Serial.
instrument manufacturer multiple software
specific to each platform. applications.
Requires VISA to be installed.

Panel Driver Requires an Instrument Panel Easy to use. GPIB and VXI.
Driver supplied with VEE.P

Component Requires an Instrument Panel Faster 1/0O than GPIB and VXI.

Driver Driver supplied with VEE. Panel Driver.

PC Plugin Requires an ODAS driver Fast I/0. Drivers PC plugin slots

a. HP-1B is Hewlett-Packard’s implementation of the IEEE-488 interface
bus standard. Other implementations are called GPIB. LAN interface
support does not include purely L AN-based instruments.

b. Panel Drivers are also sometimes called "VEE drivers.”

The To/From VXIplug&play, Panel Driver, Component Driver,
and pC PlugIn Driver objectsallow you to control instruments without
learning the detail s of the instrument’s programming mnemonics and syntax.
If you prefer to communicate with your instruments by sending low-level
mnemonics, or if adriver is not available for your instrument, you can use

Direct I/O.

You can use all five methods to communicate with different instruments
within aV EE program. However, do not use V Xl plug&play drivers along
with any of the other methods to communicate with the same instrument in
the same program — unexpected results may occur.

Chapter 2

43

An Example of
Direct I/O

Multilnstrument
Direct I/0

Instrument Control Fundamentals

I ntroduction to Direct 1/0

Direct I/0 objectsalow you toread and write arbitrary instrument data
in much the same way you read from and write to files. This allows you full
access to any programmable feature of any instrument. No instrument driver
fileisrequired, but you must have a detailed understanding of your
instrument’s programming commands to use Direct I/0.Inorder to use
Direct I/Otocommunicatewith GPIB, VXI, or Serial devices, thel/O
libraries must beinstalled as described in Installing the Agilent I/O Libraries
(VEE for Windows) or Installing the Agilent 1/O Libraries (VEE for HP-UX).

Direct I/0 objectsalso provide convenient support for learn strings. A
learn string is a specia feature supported by some instruments that allows
you to set up measurement states from the front panel of the physical
instrument. Once the instrument is configured, you simply select Upload
fromthebirect 1/0 object menu to upload the entire measurement state
of theinstrument to VEE. You can recall the measurement state from within
your program by usingthe pirect 1/0 object.

Figure 2-2 showsabpirect I/0 object set up to obtaintheidentification
string from an HP 34401A Multimeter:

— dmm2 (hp344-01a@?23) | .||
WRITE TEXT "idn" EOL —‘| Alphahumeric | - |
READ TEXT x STR IHEWLETT PACKARD, 3
= Double-Click to Add Transaction = 4 ﬂ

Figure 2-2. Using Direct 1/O to Identify an Instrument

Thefirst transactioninthe birect 1I/0 object writesthetext string * 1DN?
to the HP 34401A at GPIB address 722. This causes the HP 34401A to send
the identification string, which is read by the second transaction and output

to the AlphaNumeric object.

For information about how to configure VEE to use Direct 1/0, See
Chapter 3, “ Configuring Instruments”. For details about how to use the
Direct I/0 object, see Chapter 4, “Using Transaction [/O”.

TheMultiInstrument Direct I/O objectletsyou control severa
instruments from a single object using direct I/O transactions. This object

44 Chapter2

Instrument Control Fundamentals

looksthe same asthe Direct I/0 object, except that each transactionin
theMultiInstrument Direct I/0 object can addressaseparate
instrument.

The object is a standard transaction object, and works with al interfaces that
VEE supports. SincetheMultiInstrument Direct I/0O objectdoesnot
necessarily control a single instrument, the title does not list an instrument
name, address, or live mode condition.

By usingtheMultiInstrument Direct I/0,Yyou canreducethenumber
of instrument-specific Direct I/0 objectsin your program. The resulting

performance increase is especially important for the VXI interface, which is
faster than GPIB at instrument control.

Figure 2-3 showstheMultiInstrument Direct I/OObjectanditsI/o
Transaction diaog box. The object is being set up to communicate with
an HP E1413B, HP E1328, and HP 3325.

- Multilnstrument Direct IO 1=l

WRITE "hp3478a" TEXT "initcont” EOL
WRITE "hp3325h" TEXT "FR1234.0000

sartinn =

| wrITE [=| | dmmz =] DefaultAddressl | TExT =] fvori.2s
| DEFAULTFORMAT [=] EOLONl

ok | mop | cancel

Figure 2-3. Multilnstrument Direct I/O Controlling Several Instruments

For further information about using theMultiInstrument Direct I/0
object, see “Using the Multilnstrument Direct I/O Object” on page 181.

Chapter 2 45

Getting Started

Note

Instrument Control Fundamentals

Introduction to VXI plug&play

V Xlplug&play is an interface specification that allows multiple vendors to
supply compatible hardware and software. A V Xlplug&play driver isa
library of functions for controlling a specific instrument. The driver is
written by the hardware vendor and shipped with the instrument.

V Xlplug& play drivers can be written for non-V X| instruments.

VEE Version 3.2 and later supports drivers that comply with the WIN95/98,
or WINNT, or HP-UX framework, V XIplug& play specification version 3.0
or later. The HP-UX framework supports HP-UX version 10.x.

Before you can get started with V Xlplug&play, you must have completed
these steps:

1. Install theinterface (GPIB or VXI).

2. Install VISA. If you are using an Agilent interface card use VISA as
supplied with VEE. See Installing the Agilent I/O Libraries (VEE for
Windows) or Installing the Agilent 1/O Libraries (VEE for HP-UX) for
details. Otherwise, you must install VISA as supplied with the interface
card.

3. Configure VISA for each hardware interface. If you are using an
Adgilent interface card follow theinstructionsin Installing the Agilent 1/0
Libraries (VEE for Windows) or Installing the Agilent 1/O Libraries (VEE
for HP-UX). Otherwise, you must configure VISA as specified by the
interface manufacturer.

VISA (Virtual Instrument Software Architecture) isan /O library that

V Xlplug&play drivers use to control instruments. VISA isrequired for

V Xlplug&play and provides VISA function calls which are used by the
V Xlplug&play drivers.

46 Chapter 2

What You Need

Note

Installing the
VXlplug&play Driver
Software

Location of Files
(WIN95 and WINNT
Frameworks)

Instrument Control Fundamentals

VEE needs these four files for each V XIplug&play driver.

B Thelibrary file

B Thefunction panel file

B The header file
B Thehepfile

Thefilesinstalled with each V XIplug&play driver always include thesefiles.
Other files are also installed.

Not all VXlplug&play drivers support all frameworks (platforms). Also,
certain versions of VISA may not be supported on al frameworks. Please

check with the appropriate vendor.

To install the set of files needed for each driver, follow the instructions
included with the driver by the instrument manufacturer.

The VXlplug&play files are located under the wInos\ or wIN9os\ directory
or thewINNT\ directory. Thislocation isrelative to the root drive and
directory value stored in the registry by the VISA installation. The default
value for the root drive and directory is C: \VXIPNP.

Table 2-2 showsthe V XIplug& play driver files needed by VEE:

Table 2-2. Location of WIN95 and WINNT Framework Driver Files

Filename? Location Purpose
PREFIX 32.DLL | BIN Instrument driver library
PREFIX.Fp PREFIX Instrument driver function panel file
PREFIX.H INCLUDE Instrument driver header file
PREFIX.HLP PREFIX Instrument driver help file

a PREFIX refersto the name of theinstrument such asHPE1410.

Chapter 2

47

Instrument Control Fundamentals

Location of Files The V Xlplug& play files are located under the vxipnp/hpux/ directory.

(HP-UX Framework) Thislocation isrelative to the root directory represented by the environment
variable vx1pNPPATH. This environment variableis set to /opt by default,
so the directory isnormally /opt /vxipnp/hpux/.

Table 2-3 shows the V Xlplug& play driver files needed by VEE:

Table 2-3. Location of HP-UX Framework Driver Files

Filename? Location Purpose
PREFIX. sl bin Instrument driver library
PREFIX. fp PREFIX Instrument driver function panel file
PREFIX.h include Instrument driver header file
PREFIX.hlp PREFIX Instrument driver help file

a. PREFIX refersto the name of the instrument such asHPE1410.

Summary of Working with V Xlplug& play driversis different than using other types of
Terminology I/0 with VEE. Hereis asummary of how the different pieces fit together.

B The VEE program calls V XIplug&play functions.

B The functions (that have parameters that may be set via function panels)
are part of the V Xlplug&play driver. The functionstalk to the instrument
through the VISA software.

B Theinstrument passes data back through VISA and into the function
parameters.

A VXIplug&play Figure 2-4 shows an example program that uses the To/From
Example Program vxIplugsaplay object to initiate a voltage measurement and to obtain a
reading from the HP E1410A Multimeter.

48 Chapter 2

Further Information

Panel Drivers

Instrument Control Fundamentals

~] ToiFrom DMM2 =
hpe1410_measure_2(nstrHandle, hp —-|AlphaN-umeric| =
= Diouble-Click to Add Function = reading . 1.091

Figure 2-4. Using the To/From VXIplug&play Driver Object

For information about how to configure VEE to use V Xlplug& play, see
Chapter 3, “Configuring Instruments’. For further information about how to
use VXlplug&play in VEE, see Chapter 7, “Using V XIplug&play Drivers’.

Introduction to Panel Driversand Component Drivers

Panel Driver and Component Driver oObjectscan be usedfor a
particular instrument only if thereisadriver file to support that instrument.
The installation procedure for VEE for HP-UX automatically copies al of
the available driver files onto your system disk. The installation procedure
for VEE for Windows 95/98 and Windows NT allows you to select which
drivers you want to install. Chapter 3, “Configuring Instruments” describes
how to select and configure the proper driver files for your instruments.
Also, the I/O libraries must be installed as described in Installing the Agilent
I/O Libraries (VEE for Windows) or Installing the Agilent I/O Libraries
(VEE for HP-UX).

pPanel Drivers Servetwo purposesin VEE:

B They alow you to define a measurement state that specifies all the
instrument function settings. When apanel Driver operates, the
corresponding physical instrument is automatically programmed to
match the settings defined in the Panel Driver.

B They act as instrument control panelsfor interactively controlling
instruments. Thisis useful during development and debugging of your
programs. It is also useful when your instruments do not have a physical
front panel.

Chapter 2 49

Component Drivers

Instrument Control Fundamentals

Asshownin Figure 2-1, the open-view of arPanel Driver containsa
graphical control panel for the associated physical instrument. If the physical
instrument is properly connected to your computer, you can control the
instrument by clicking the fields in the graphical control panel. You can also
make measurements and display the results by clicking the numeric and XY
displays.

Even if theinstrument is not connected to your computer, you can still use
the graphical panel to define a measurement state. In fact, this can be a
benefit if you want to develop programs before instruments are purchased
or while they are being used elsewhere.

For example, suppose you want to program an HP 3325B function generator
to provide two different output signals.

1. A square wave with afreguency of 20 kHz and an amplitude of 20mV
rms.

2. A sinewave with afreguency of 50 kHz and an amplitude of 50mV rms.

Figure 2-5 showsthetwo ranel Drivers that providethe desired signals.

—| fgen (hp332sh @ 717) = —| fgen (hp332sh @ 717) =

Main Panel

Main Panel

Function Function

Freguency 20 k rregquency L

N T =T

Aszsign 0

Aszsign 0

Figure 2-5. Two HP3325B Panel Drivers

In an instrument driver, each instrument function and measured value is
called acomponent. A component is like avariable inside the driver that
records the function setting or measured value. Thus, a Component
Driver iSan object that reads or writes only the components you

50 Chapter 2

Instrument Control Fundamentals

specify asinput and output terminals. Thisisin contrast to a Panel
Driver, which automatically writes values for many or all components.

Component Drivers are provided to help you improve the execution
speed of your program. Speed is the only advantage they provide over
Panel Drivers. The execution speed of aprogram is generally impacted
most when an instrument control object is attached to an iterator object
where it must operate many times. In these cases, it is common for only one
or two components to be changing; thisis exactly the situation Component
Drivers aredesigned to handle.

The increase in execution speed provided by a Component Driver will
vary considerably from one situation to another. The increase depends
primarily on the particular driver file used. Thereis no easy way to predict
the exact increase in execution speed.

For example, suppose you want to program the HP 3325B Function
Generator to do the following:

1. Output asine wave with an initial frequency of 10 kHz and an amplitude
determined by operator input.

2. Sweep the frequency output from 10 kHz to 1 MHz using 5 steps per
decade.

In this case, it makes senseto use a Panel Driver to perform theinitial
setup and a Component Driver to repeatedly set the output frequency.
Figure 2-6 shows a program that does this.

Chapter 2 51

Further Information

Instrument Control Fundamentals

|‘| Amggt“de [E = fgen (hpaazsh @ 717) =
I

I 50m —

Main Panel

Function

= rrequency NGEESEE
AMPLITUDE | amplitude HESEIN 533
ofeser NN

Phase

Aszsign 0

—|Far Log Range | ~

Fr0n1|1Dk
Thru |1DDDK 1 FREQUENCY
/Dec |5

—| fgen(hp3azsh@ 71T |«

Figure 2-6. Combining Panel Drivers and Component Drivers

For information about how to configure VEE, see Chapter 3, “Configuring
Instruments’. For further information about how to use the Panel Driver
and component Driver objects, see Chapter 6, “Using Panel Driver and
Component Driver Objects’.

Support For Register-Based VXI Devices

When using the instrument control objects to directly address V XI devices
on the VX1 backplane, you need to know whether devices are message-
based or register-based. VEE communicates with message-based devices
by means of SCPI (Standard Commands for Programmable Instruments)

messages.

VEE aso provides Interpreted SCPI (I-SCPI) support for most Hewl ett-
Packard and Agilent register-based devices. I-SCPI drivers let you
communicate with register-based devices as though they were message-
based. This means that a VEE program can communicate with a register-
based device using standard SCPI messages, provided thereisan I-SCPI
driver for that particular device. If no I-SCPI driver isavailablefor a

52 Chapter 2

Instrument Control Fundamentals

register-based device, VEE must communicate with that device by directly
accessing its registers.

The |-SCPI drivers give you the flexibility to use any of the instrument
control objectsyou prefer. You can usethe panel Driver for easier
programming, or use SCPI commandsinDirect I/0 for faster execution
speed. When you program V EE to communicate with a register-based
device using SCPI messages, VEE will inform you if the required |-SCPI
driver is not available. In that case, you will need to access the device
registersdirectly using Direct I/0OrMultiInstrument Direct I/O.

Chapter 2 53

Instrument Control Fundamentals

54 Chapter 2

Configuring Instruments

Configuring I nstruments

This chapter shows how to configure V EE to communicate with your
instruments using the following methods:

1. By meansof Direct I/0 objects(noinstrument driver isrequired).

2. By means of VXlplug&play drivers using To/From VXIplugs&play
objects.

3. By meansof Agilent Panel Drivers ("IDs") using either panel Driver
Of Component Driver Objects.

4. By meansof Formula objectsusing ODAS PC Plugin card drivers.
VEE 6.0 supports PC Plugln cards with ODAS (Open Data Acquisition
Standard) compliant software drivers.

TheVEE Instrument Manager dialog providesaunified method to select
and configure all of these instrument-control objects.

For VEE to communicate with instruments, you must first install the
Adgilent I/O Libraries as described in Installing the Agilent I/O Libraries
(VEE for Windows) or Installing the Agilent 1/O Libraries (VEE for HP-UX).
The Agilent SICL librarieslet you use Panel Driver, Component
Driver, Of Direct I/0 objects. TheVISA librarieslet you use To/From
VXIplug&play oObjects.

Touse Panel Driver OF Component Driver oObjects, you must install
the appropriate Panel Drivers. For VEE for HP-UX, the drivers are
automatically installed as part of the VEE installation. For VEE for
Windows, you can install any desired selection of Instrument Drivers during
the VEE ingtalation. (No instrument drivers are required for Direct

1/0 objects.)

V Xlplug&play drivers are supplied by the instrument manufacturer with
many VXI instruments. To use aTo/From VXIplug&play Object, you
must install the appropriate V XIplug& play driver files, following the

56 Chapter 3

Configuring Instruments

instructions provided with the driver. For further information about
V Xlplug&play drivers, see Chapter 7, “Using V XIplug& play Drivers’.

ODAS PCPI card drivers are supplied by the instrument manufacturer with
many PC instruments. To use an ODAS PCPI card driver object, you must
install the appropriate ODAS PCPI driver files, following the instructions
provided with the driver.

Chapter 3 57

Configuring Instruments
Using the Instrument Manager

Using the I nstrument M anager

This section provides an overview of how to use the Instrument
Manager and the configuration dialog boxes to find and configure
instruments in VEE. Some examples are given and, for many applications,
you can use the default values for most parameters. However, see “ Detail s of
the Properties Dialog Boxes” on page 85 for details of the configuration
fieldsin these dialog boxes.

Overview

To configure an instrument, select 1/0 = Instrument Manager oOr click
onthe Instrument Manager button in the toolbar.

HEH
It looks like this:

The Instrument Manager dialog box appears. It has no instruments until
you find and add them, as Figure 3-1 shows.

58 Chapter 3

Configuring Instruments
Using the Instrument Manager

Instrurnent Manager

-Instrument List AUt Discovery

My Configuration {d:wee.io) Find Instruments
EORMyurE Phivers

Settings...

rInstrument
Add...
Reraye
Erapeties

- Create fO Object——
[irect i
e o = I =

EEmElETYER

L)) = | =

[o]34 | Savel Cam:ell Printl Helpl

Figure 3-1. The Instrument Manager Dialog Box

The Instrument Manager displays four sections:

B Auto Discovery buttonsallow you to find instruments and configure
driversfor them. If you click onthe Find Instruments button, VEE
automatically updates all configured GPIB and V X1 instruments and
displays any other GPIB and VX I instruments connected to your
computer. If you click on the settings button, VEE displaysthe auto
Discovery Settings dialog box, described in the next section.

B Instrument List displaystheinstrumentsthat are currently
configured. This configuration is defined by the 1/0O configuration file
(see“The 1/O Configuration File” on page 189 for further information).
The default configuration is blank (empty).

B Instrument buttonsallow you to modify the instrument configuration.
The Instrument button actions are described in more detail later in this
chapter.

Chapter 3 59

Configuring Instruments
Using the Instrument Manager

B Create I/0 Object buttonsallow youto select Direct 1/0,
Plug&play Driver, Panel Driver, and Component Driver
objects and place them in your program.

Auto Discovery

Theauto Discovery areacontainsthree buttons: Find Instruments,
Configure Drivers, and Settings.

B TheFind Instruments button updatesany existing GPIB and VXI
instrument configurations and adds any unconfigured GPIB and V X
instruments connected to your computer to the Instrument List.
Find Instruments aso findsand addsany Serial and GPIO interfaces
tothe Instrument List, but not the instruments connected to them.

B Theconfigure Drivers button configures drivers for instruments
aready found and in the Instrument List.

B The settings button allows you to determine how instruments and
drivers are configured.

WithMy Configuration highlighted inthe Instrument List,

click Find Instruments to update all existing GPIB and VXI instrument
configurations and to add any unconfigured GPIB and V X1 instruments to
the list. Live modeis turned on for instruments that are found and are
powered up. (Live mode settings are not switched from on to off if
configured instruments are not found.)

Next click settings, to bring up the dialog box that allows you to control
how instruments and drivers are detected and configured. This box has two
sections: Find Instruments and Instrument Identification.

TheFind Instruments section hastwo radio buttons:

U Detect only
U Detect, identify, and configure drivers for each instrument.

If "Detect only" is checked, VEE detects al live bus addresses when you
click the Find Instruments button. If "Detect, identify, and configure
driversfor al instruments' is checked, VEE detects all live bus addresses,

60 Chapter 3

Configuring Instruments
Using the Instrument Manager

sends"*IDN?" to all detected instruments, and tries to configure drivers for
each instrument.

Thelower section controlsthe configure Drivers button. If "Ask before
sending "*IDN?" to each instrument?' box is checked, V EE stops before
configuring each driver and asks if you want to proceed. If thisbox is not
checked, VEE automatically configures each driver.

Thelnstrument List

If Find Instruments found oneinstrument connected to your computer,
the Instrument Manager might ook like Figure 3-2. In this example,
Find Instruments found a Seria Interface but does not show any
instruments that may be connected to it. Newly discovered instruments are

named "newlnstrument”, "newlnstrument1”, etc. You can give them more
descriptive names, as shown later.

Instrurnent Manager

~Instrument List ~Auto Discovery
My Configuration (d-wee.jioy* Findlnstrurmets
B opi7 Eaniure Drvers
LE?‘ newlnstrument(@y22) et
Bm Settings...
- Instrument
Add...
Properies
- Create I Ohject——
B =X 0]
S i B =iy
Eamel DrveEr
L o = g B
Ok | Save | Cancell Print | Help |

Figure 3-2. The Instrument List

Chapter 3 61

Configuring Instruments
Using the Instrument Manager

To usethe Instrument Manager, click the gGr1B7 Interface selection. It
becomes highlighted and the properties button becomes active. Click the
[-1 iconinfront of GPIB7 to "collapse" the selections under it. Figure 3-3

shows the collapsed configuration.

Instrurnent Manager

-Instrument List AUt Discovery

My Configuration (d-wee.io)* Find Instruments |
.} OPIB7 e Drivers |
¥ Serial
Settings... |

- Instrument
Add...

Fermoye |
Fropeties |

- Create I Ohject——

B =1 o] 1) |
S i B =iy |
Eamel DrveEr |
CompnnentDri\terl

[o]54 | Savel Cancell F'rintl Helpl

Figure 3-3. Collapsing the GPIB7 Interface Configuration

To "expand" the selections again, click the [+] iconin front of cP1B7.

(To expand the entire tree, select My configuration and pressthe* key.)
Now click the selection newInstrument@722 or the "instrument” iconin
front of it to highlight it. Figure 3-4 shows how the window looks.

62 Chapter 3

Configuring Instruments
Using the Instrument Manager

Instrurnent Manager

-Instrument List AUt Discovery

My Configuration {d-wee.i0J* Find netiirments |

W GPIB7 .
Configure Drivers |

Bl N nstrument(@r 22) .

¥ Serial Seftings... |

- Instrument
Add. .

Femove |

Properies

- Create fO Object——

Direct 170 |
e o = I = |
Fafel e |
CDmpnnentDriverl

Ok | Savel Cancell F'rintl Helpl

Figure 3-4. Selecting an Instrument for Configuration

Instrument Configuration

Note that all of the buttons under Instrument are now active, including
Properties. Thismeansyou can delete, edit, or manually configure the
configuration of the existing instrument or add a new instrument to the list.

Also, note that one of the buttons under Create I/0 Object iSnow
active. Thismeansyou can select and placeabirect I/0 Object forthe
instrument. With other instrument configurations, the pP1ugsplay Driver,
Panel Driver, and Component Driver buttonsmay be active at this
point, depending on what drivers you have installed.

Click onthe configure Drivers button to update the instrument
configuration. The Identify Instrument dialog box appears asking if you
want to send the » DN (identification) message to the instrument. Figure 3-
5 shows this dialog box.

Chapter 3 63

Configuring Instruments
Using the Instrument Manager

Instrument Manager

~Instrument List -Auto Discovery

My Configuration {d-wee. in)* Find mettiments
| crip7 Configure Drivers
e nevnstum Settings |
¥ Serialt

~Instrument

Add...

Remaove

Froperties

Identify Instrument

Send "*IDMN?" to newlnstrument { @ 7227

The response to "*IDN?" provides an
@ accurate identification of this instrurment.

Mote: Older, non 488.2 campliant instruments do not
understand this command. Ifthis command causes an
QK | Save error in the instrument, cycle the power an the

instrument to reset it.
: Mo |

Figure 3-5. Updating the Instrument Configuration

Click ox. If the instrument connected to the GPIB Interfaceis turned on, the
instrument will respond. In this example, the instrument is an HP 34401A

and isturned on. Figure 3-6 showshow the Instrument List looksat this
point.

64 Chapter 3

Configuring Instruments
Using the Instrument Manager

Instrurment Manager

- Instrument List ~Auto Discovery
Wy Configuration (d-wee.io)* Fifid Irstrurients
| GPIB7 = :
TH '-.-'Ir|:::trurr||:er|t|,_h;_|._-l-'14|_|1:ﬂu:g_.!.') Er—
- Instrument
Add...
Remave
Properties

- Create VO Object——
Direct 10
Plug&play Driver

Fanel Driver

Component Driver

[o]54 | Savel Cancell F'rintl Helpl

Figure 3-6. The Instrument List after Configuring Drivers

Note that two changes have occurred:

1. Theinstrument identification has changed to
newInstrument (hp3440la@722).

2. The"ingtrument" icon in front of newInstrument (hp34401a@722)
has changed to show that the instrument is connected to the computer.

(If the instrument is not powered up, the identification and the icon will not
change.)

Renaming an I nstrument

When the instrument has been identified, you can give it a more meaningful
namein the Instrument List. Click the Properties button to do this. When
the properties dialog box appears, click in the Name field and type the

Chapter 3 65

Configuring Instruments
Using the Instrument Manager

name you prefer. Figure 3-7 shows the name "dmm" entered to replace

"newlnstrument” for the HP 34401A.

Instrurnent Manager

- Instrument List

My Configuration (dwee.io)*
® oPiB7

strumentthp34401 2

¥ Serialt

oK | Save E

~Auto Discovery
Eird et e s

Canfigure Drivers

Settings...

- Instrument
Add...
Remave

Instrurnent Properties

Marme: drmrm

Interface: m
Address (ed 7143 722
Gateway: Thiz hast |

Advanced...l

0K | Cancell Helpl

Figure 3-7. Changing an Instrument Name

Clicking OK completes the change. Figure 3-8 shows the Instrument

List with the new name for the HP 34401A.

66

Chapter 3

Adding an
Instrument
Configuration

Instrurnent Manager

- Instrument List

My Configuration {d:wee io)*
¥ GPIB?
drnrm(hp 34401

¥ Serialt

Configuring Instruments

~Auto Discovery
Eid et ERts
Configure Drivers

Settings...

rInstrument
Add..

Remowe

- Create W0 Qbject——
Direct 10
Flug&play Driver
Fanel Driver

Component Driver

8154 | Savel Cancell

print | Help |

To add an instrument, click the add... button. The Instrument Properties
dialog box appears as shown in Figure 3-9.

Figure 3-8. The Renamed Instrument

Using the Instrument Manager

Chapter 3

67

Configuring Instruments
Using the Instrument Manager

Instrurnent Manager

rInstrument List rAuto Discovery
My Configuration (d:wee io)* Findlnsthurients
W crB7 Configure Drivers
dmmihp34401a@722) W
¥ seriall
rInstrument
Add. .
Remaove |

Instrurnent Properties

Name: Inewinstrument[il
Interface: | GPIB 'I
Address {eg 714): 714

Gateway: This host |
(0] 4 | Save Ca Advanced___l

— 0K | Cancell Helpl

Figure 3-9. Adding an Instrument

By default, the new configuration displays the name newInstrument. You
can typein anew name, such as dmm2. Leave the Interface field with
cpriB selected. (If you want to change the type of interface, click the arrow
to theright of cp1B to display the drop-down list.) Then, click the address
field and change the addressto 723 . Figure 3-10 shows the Instrument
Properties dialog box with these changes.

Note To move from field to field in the dialog box, click the desired field, or use
the Tab key. If you press Enter or Return, the dialog box will exit.

68 Chapter 3

Note

Configuring Instruments
Using the Instrument Manager

Instrument Properties

Mame: Em
Interface: | GFIB 'I
Address (eqg T14) T3

Gateway: This host |
Advanced...l

0K | Cancell Helpl

Figure 3-10. Changing the Name and Address Fields

Now click the advanced... button to display the advanced Instrument
Properties dialog box in Figure 3-11.

Advanced Instrument Properties

General | Direct 0 | Flug&play Driver | Fanel Criver |

Timeout {sec): | E
Live Mode: o} |
Byte Ordering: MSB

Description {optionaly: |

0K | Cancell Helpl

Figure 3-11. The Advanced Instrument Properties Dialog Box

The General tab of this dialog box allows you to specify atimeout value,
to turn live mode on or off, to select byte ordering, and to add a description.
Click the Description field and enter hp34401a.

For further information about the individual fieldsin the Instrument
Properties and Advanced Instrument Properties dialog boxes, see
“Details of the Properties Dialog Boxes’ on page 85.

Chapter 3 69

Configuring Instruments
Using the Instrument Manager

Thetabsand fieldsdisplayed inthe Advanced Instrument Properties
dialog box depend on the interface you have selected.

Now select the Panel Driver tab to display the dialog box shownin
Figure 3-12.

Advanced Instrument Properties

General | Directlio | Plug&play Driver |

IC Filename: |
Sub Address: |

Error Checking: ON |
Incremental Mode: o} |

0K | Cancell Helpl

Figure 3-12. The Panel Driver Tab

Click the 1D Filename field. You are prompted to select an Instrument
Driver file. (The Windows dialog is shown in Figure 3-13. The HP-UX
dialog is different, but also allows you to select afile.)

70 Chapter 3

Configuring Instruments
Using the Instrument Manager

Read from what Instrument Driver?
Lack i [ids = ci
1 help hp54504a.cid
hp331 20a.cid hpS4600. cid
hp3325h. cid hpel300a.cid
hp34401 a.cid hpe 40, cid
hp3478a.cid
hp3475a.id

File name: | Open I
Files of type: | Instr. Drivers (*.CID.%ID) | Cancel |/
%

Figure 3-13. Selecting an Instrument Driver File

Double-click hp34401a.cid to select that file, as shown in Figure 3-14.

nced Instrument Properties

General | Direct IO | Plug&play Driver ~ Panel Driver

ID Filename:
Sub Address: l—
Errar Checking: o} |
Incremental Mode: il |

0K | Cancell Helpl

Figure 3-14. The Selected ID Filename

Now click ok on each dialog box to returnto the Inst rument Manager as
shown in Figure 3-15.

Chapter 3 71

Configuring Instruments
Using the Instrument Manager

Instrurnent Manager

~Instrument List ~Auto Discovery

My Configuration {d-wee.io)* Findlnstrurmets |
- PIBI Configure Drivers
=l dmmchp34401 a@7232)
i) ky} Settings. .. |

- Instrument
Add...

Remaye |

Fropeties

¥ Serialt

- Create I Ohject——

Direct /O |
Plugé&play Driver |
Panel Driver |
CompnnentDri\terl

[o]54 | Savel Cancell F'rintl Helpl

Figure 3-15. The New Configuration

At this point you can save the new configuration by clicking the save
button.

Adding a Panel Driver or Component Driver

When you have saved your new configuration, you can add either a Panel
Driver object or a Component Driver object for dmm2. Select 1/0 =
Instrument Manager toredisplay the Instrument Manager, asS
shownin Figure 3-15. Click amm2 (@723) if itisnot already highlighted and
then click the component Driver button. Move the outline to the desired
position in the work area, and click the mouse button to place the
Component Driver object. The object appears as an icon asshownin
Figure 3-16.

72 Chapter 3

Editing an
Instrument
Configuration

Configuring Instruments
Using the Instrument Manager

Figure 3-16. The Component Driver Object

In the same manner, if you had clicked on the Ppanel Driver button, a
panel Driver object would have appeared.

You can edit an existing instrument configuration, also using the
Instrument Properties and Advanced Instrument Properties
dialog boxes. To edit the configuration for the HP 34401A Digital
Multimeter, select dmm (hp34401a@722) inthe Instrument List, and
then click the Properties... button. The Instrument Properties
dialog appears as shown in Figure 3-17.

Chapter 3 73

Configuring Instruments
Using the Instrument Manager

Instrurnent Manager

-Instrument List AUt Discovery
My Configuration {d-wee io)* FiANHEtarEnte
® oriB7 Configure Drivers
== g 2i@7 23) Settings...
¥ Serialt ~Instrument
Add...
Remove
Instrurnent Properties
Marme: Em
Interface: IW;I
Address (eg 714) 722

Gateway: This hast |
Ok | Save Ca Advanced___l

— OK | Cancell Helpl

Figure 3-17. Editing the dmm Configuration

To change the configuration, modify the fieldsin the properties dialog boxes
as described previously in “Adding an Instrument Configuration” on

page 67.

74 Chapter 3

Configuring Instruments
Using the Instrument Manager

Editing an Interface You can also edit an entire Interface configuration, affecting multiple

Configuration

Note

instruments. To do this, select the Interfacein the Instrument List, and
then click the properties button. For example, select cp1e7 and click the
Properties button to get the display shown in Figure 3-18.

Instrurnent Manager

-Instrument List AUt Discovery
My Configuration (d:wee io)* Find Instrurnents
H - -)) e = =
= dmm a I —
dmm;(p@?n) @2 Settings...
¥ Serialt ~Instrument
Add...
Reraye

Interface:
Address:

Gateway: This hustl H

OK | Cancell Helpl

[o]34 | Savel Cancell Printl Helpl

Figure 3-18. Editing the GPIB7 Configuration

Press cancel to make no changes, retaining the cp1B7 configuration for
use in examples.

Fromthe Interface Properties diaog box, you can changethe
Interface type from cp1B to vx1, the address from 7 to some other unused
logical unit, and you can configure aLAN gateway. Any changes will affect
all of the instruments (dmm, dmm2, etc.) currently under cpIB7. For further
information, see “ Details of the Properties Dialog Boxes’ on page 85.

Chapter 3 75

Configuring Instruments
Using the Instrument Manager

Configuring for a Direct 1/0 Object

The following example shows how to configureabirect 1I/0 object.In
this example, we configure a Serial Instrument at logical unit 1 (COM1) for
direct /0.

1. Select My Configuration

2. Click on Find Instruments

3. When Find Instrumentsis finished, select Seriall and click on Add...

4. You should see the dialog box shown in Figure 3-19.

Instrurment Manager

- Instrument List AUt Discovery
Wy Configuration (d-wee.io)* Firdlrstrirents
¥ GPIB7

)) e = =

drmmihp34401 a@722)

Settings...
1 dmm2(@T23)
Hm - Instrument
Add...

Remaye |

Instrurment Properties

Name: [newinstrumentlil
Interface: | Serial vl
Address {eg 5 | 1

Gateway: This host |
Ok | Save Ca Advanced___l

— 0K | Cancell Helpl

Figure 3-19. Configuring a Serial Device

The Instrument Properties dialog box allowsyou to select the name
and address of the new instrument. Change the name to Serial 1.

76 Chapter 3

Note

Configuring Instruments
Using the Instrument Manager

Click advanced... to display the Advanced Instrument Properties
dialog box in Figure 3-20. There are two tabs of interest.

Advanced Instrument Properties

General | Direct 0 | Flug&play Driver | Fanel Driver

Baud Rate: | 9600

Character Size: IS—;I
Stop Bits: 1 |
Farity: m
Handshake MNone |
Receive BuferSize [4085

0K | Cancell Helpl

Figure 3-20. The Serial Tab

The serial tab alows you to specify the serial parameters such as baud
rate. See “Details of the Properties Dialog Boxes” on page 85 for further
information about the individual parameters and fields. You can use the
defaults for many applications.

Thebpirect I/0 tab,showninFigure3-21, alowsyou to specify anumber
of parameters for direct 1/O, including the EOL sequence. You can use the
defaults for most applications.

The selection of fields displayed by the birect 1/0 tab dependson the
Interface that you have selected. In addition, for VX1 only there are two
additional tabs, a16 Space and 224 /A32 Space.

These tabs alow you to configure aV XI device's registers for WRITE or
READ transactionsin abirect I/0 object. See"Details of the Properties
Dialog Boxes’ on page 85 for further information about the parameters and
fields displayed by each tab.

Chapter 3 77

Configuring Instruments
Using the Instrument Manager

nstrument Properties

General | Serial [Direct IF0) |P|ug&p|ayDriver Fanel Criver

Read Terminator: | "in"
Write

EOL Sequence: I "in”

Multi-Field as: Data Onlv|
Array Separator: |

Array Format: Linear |

0K | Cancell Helpl

Figure 3-21. The Direct I/O Tab

Click ox (or cancel to make no changes) on each dialog box to return to the
Instrument Manager. Inthisexample, anew instrument, Seriali, has
been added under the seriali interface. Toadd abirect 1I/0 objectto
thework area, click thepirect 1/0 button, place the object, and click
again for the display in Figure 3-22.

= Seriall (@ (NOT LIVE) =

= Dauble-Click to Add Transaction =

Figure 3-22. The Direct I/O Object

Note Direct I/0 objectsuse transaction-based I/O to communicate with
instruments, without using an instrument driver. See Chapter 4, “Using
Transaction 1/O” for further information.

78 Chapter 3

Note

Configuring Instruments
Using the Instrument Manager

Configuring for a VXl plug&play Driver

The procedure to configure for aTo/From VXIplugs&play oObjectisvery
similar to the procedures for panel Driver, Component Driver, and
Direct I/0 objects. However, you must first install the appropriate
VXlplug&play driver files as described in “Installing the V X1plug& play
Driver Software” on page 47.

If you are using the Windows operating system, the VISA Assistant utility
provides helpful information about V X1plug& play drivers. The information
helps you determine valid addresses required for VXIplug& play driver
configuration. Look for VISA Assistant in the Windows Start menu
Program Files = Agilent I/O Libraries = VISA Assistant

For example, we will add aV XIplug& play configuration for the HP E1410A
6.5-Digit VXI Multimeter. Select 1/0 = Instrument Manager, and click
Add.... The Instrument Properties dialog box appears. Change the
nameto vxibDevice and select vx1 for the Interface type, as shownin
Figure 3-23.

Chapter 3 79

Configuring Instruments
Using the Instrument Manager

Instrurnent Manager

~Instrument List ~Auto Discovery
My Configurafion {d:wee. io)* Find Instruments
W cPin7

EOiiaure BrHyers

drrmthp34401 ag7r22)
= dmm2(@723)

¥ Serialt ~Instrument
Seriall (E@INOT LIVE))

Settings...

Add...

EERIEYE |

Instrument Properties

MHame: W

Interface:
Address (eq 1ED2E): | 0
Gateway: This host |

oK | Save Ca Ad\tanced...l

— 0K | Cancell Helpl

Figure 3-23. Adding a VXI Device

Theaddress field isnot used for V XIplug&play drivers. Click advanced...
to display the Advanced Instrument Properties dialog box, and then
select the P1lugsplay Driver tab.

Next, select the driver named HPE1410 from the Plugsplay Driver
Name drop-down list, as shown in Figure 3-24. You will not be able to select
the V Xl plug& play driver unless you have previously installed the driver as
described in “Ingtalling the V XIplug& play Driver Software” on page 47.

80 Chapter 3

Note

Configuring Instruments
Using the Instrument Manager

anced Instrument Properties
General | Directlfo [PlugBpiayDriver] | Panel Driver | 416 Space | 2432 Space
Flug&play Driver Name: | HFPE1410 'l

Farameters ta initd call - Download drivers from the Yeb

Address (e.g., GRPIBO: 22INSTR) WID::D::INSTR To add new drivers to your system:
¥ Perfarm Identification Query 1. Download drivers from the fallowing URL:
¥ Perfarm Reset hitpefieeni agilent.comifindfinst_drivers

2. Install drivers to CIWHIPMNPUWAINGS.

3. Click OK to exit this dialog box.

4. RE-enter this dialog box to see the revised
driver list.

0K | Cancell Helpl

Figure 3-24. The Plug&play Driver Tab

By default, the address field displaysvx10: : 0: : INSTR, Which assumesa
VXI logical address of o for the instrument. Generally, you will need to
supply the correct logical address. For example, if the logical address of the
HP E1410A is 24, change the Address field to vX10: :24: : INSTR. For
further information about the fieldsin the P1ugsplay Driver tab, see
“Details of the Properties Dialog Boxes’ on page 85.

Only the Plugsaplay Driver tab appliesto configuring V XIplug& play
drivers. The General, Direct I/0, Panel Driver, Al6 Space, and
A24/A32 Space tabshave no effect on aVXIplug& play configuration.
For example, the Live Mode setting on the General tab isignored since
aVXlplug&play device is always considered live.

Chapter 3 81

Configuring Instruments
Using the Instrument Manager

When you have configured the instrument, click ok on each dialog box to
return to the Instrument Manager, which will show the added
instrument, asin Figure 3-25.

Instrurment Manager

- Instrument List ~Auto Discovery
My Configuration (d-wee io)* Findllnstruments
L PIBT Canfigure Drivers
drmmihp34401 a@7 22 W
S5 dmm2i@723) _—
¥ Seriall -Instrurment
Seriall (@(MOT LIVEX) Add
v
v Devicel@(NOT LIVED) Remave

- Create VO Object——
Direct 10
Plug&play Driver

Eamel e

)]) = =

[o]54 | Savel Cancell F'rintl Helpl

Figure 3-25. The VXI Configuration

Click the Plugsaplay Driver buttontoadd aTo/From VXIplugsaplay
object as shown in Figure 3-26.

= TolFrom wiDevice =

= Daouble-Click to Add Function =

Figure 3-26. The To/From VXIplug&play Object

See “Using the To/From V XIplug& play Object” on page 235 for
information about using the To/From VXIplug&play object.

82 Chapter 3

Configuring Instruments
Using the Instrument Manager

Configuring for a PC Plugln Card

VEE supports ODAS (Open Data Acquisition Standard) compatible PC
Plugln cards through ActiveX automation. Follow the manufacturer’s
instructionsto install and configure these cards.

In the Instrument Manager, click Find Instruments. If the PC Plugin
hardware and software have been configured correctly you see a
configuration similar to Figure 3-27:

Instrurnent Manager

-Instrument List ~Auto Discovery

My Configuration {CWINDOWS\ProfilesuUim Eindinetiments |
= CPI AGDeyiceD0 (AGPCPIOD) [— |
= Rohotarm (Robot&rm)
i) SetlinnE.. |

- Instrument

Add...

Remowe |
Properties |

- Create W0 Qbject——

FCRI Driver |

S5 E TempSensor (TempSensarn
H PCPI1 AGDevice1 (AGPCPIO1)

22} BathTemp (BathTemp)

"=l HeaterControl (HeaterControl

Ok | Savel Carcell Printl Helpl

Figure 3-27. Example PC PlugIn Configuration

Click onthe pcp1 Driver button to get aformula object similar to Figure
3-28:

Chapter 3 83

Configuring Instruments
Using the Instrument Manager

=] Forrmula (Analogln

| h ITempSenSDr.AlnBingle(Ch, Brref Wal)

Figure 3-28. Formula Object Created by VEE

Thisisaformula object with acall to AInSingle method. VEE will
automatically create an object for this method (in this example
‘TempSensor’) so you don't have to call CreateObject() to createit. All the
properties and methods supported for this objects are listed in the Function
& Object browser under ActiveX Objects.

84 Chapter 3

Configuring Instruments
Details of the Properties Dialog Boxes

Details of the Properties Dialog Boxes

This section provides a detailed description of the Instrument
Properties dialog box, each tab of the Advanced Instrument
Properties dialog box, and the Interface Properties dialog box.
For an overview of using Instrument Manager and these dialog boxes,
see “Using the Instrument Manager” on page 58.

I nstrument Properties Dialog Box

The Instrument Properties dialogbox appears when you select an
instrument and click either the add... button or the Properties buttonin
the Instrument Manager. See Figure 3-29 for an example of this dialog
box:

Instrument Properties

Name: 3407
Interface: | GFIB 'I
Address (eg 714 714

Gateway: This host |
Advanced...l

0K | Cancell Helpl

Figure 3-29. The Instrument Properties Dialog Box

The following sections describe the individual fields.

Chapter 3 85

Name Field

Note

Interface Field

Address Field

Configuring Instruments
Details of the Properties Dialog Boxes

VEE Instrument control objects require that the Name field uniquely
identifies a particular instrument configuration. The instrument Name isa
symbolic link between each instance of an Instrument Control object and all
the configuration information corresponding to that Name. Usualy, thisfield
is used to give adescriptive name to theinstrument, such asoscilloscope
Or Power_Supply.

Name must be avalid VEE variable name if you want to programatically get/
set its properties. The name must start with an a pha character, followed by
alphanumeric characters or underscores.

NameS must be unique. For example, you cannot configure two instruments
with aName of scope. Whileitis possibleto create two different Names that
refer to the same physical instrument, it can cause problems if you use both
NameSWith Panel Driversor VXlplug&play driversin the same program.

Do not confuse the Name of an instrument with the text that appears as the
titlein an Instrument Control object. The default title of an Instrument
Control object isthe name, but you can change the title and it has no effect
on theName. If you need to determine the Name of a particular instance of an
Instrument Control object, select Propertiesin the Instrument Control object
menu, (e.g. Direct 1/O, Multilnstrument 1/0).

It isvery important that you use Names correctly. This section discusses
only the more common situations. For more detail s about how VEE uses
names, see “ The Importance of Names’ on page 227.

The interface field specifies the type of hardware interface used to
communicate with the instrument: GPIB, VXI, GPIO, Or Serial.

The address field specifies the address of the instrument. For instruments
using GPIO or Seria Interfaces, the address is the same as the interface
logical unit. Aninterface logical unit is anumber used by the computer to
identify a particular interface.

For instruments using GPIB Interfaces, the addressis of the form xxyyzz,
where:

86 Chapter 3

Note

Note

Configuring Instruments
Details of the Properties Dialog Boxes

B xx isthe one- or two-digit interface logical unit. The factory default
logical unit for most GPIB Interfacesis7.

B yyisthetwo-digit bus address of theinstrument. Use aleading zero for
bus addresses less than 10. For example, use 09 not 9.

B zz isthe secondary address of the instrument. Secondary addresses are
typically used by cardcage-type instruments that use multiple plug-in
modules. Secondary addresses are used to access devices through a
command modulein a C size V X| mainframe, and to address devices
inaB size VXI mainframe.

The secondary address is the secondary address as defined in IEEE 488.1.
It is part of the interface specification of the instrument hardware. The
instrument hardware design determines whether or not a secondary address
isrequired. Secondary addresses are not related to driver configuration.

Do not confuse secondary addresses with the sub address field used in
the Advanced Instrument Properties dialog box. Subaddressesare a
driver-related feature and are used very rarely.

For instruments using V X | Interfaces (connected to embedded controllers or
controllers with direct access to the V XI backplane), the addressis of the
form xxyyy, where:

B xx istheone- or two-digit logical unit of the VXI backplane interface of
an embedded or external controller.

B yyyisthelogical address of the VXI device. Use leading zeros for
logical addresses less than 100. For example, use 008 not 8.

Setting the Address field to 0 has special meaning. Setting the Address
field to o (for any interface) means thereis no physical instrument matching
this device description connected to the computer. An address of 0
automatically setsLive Mode t0 OFF.

Chapter 3 87

Gateway Field

Advanced... Button

Configuring Instruments
Details of the Properties Dialog Boxes

GPIB Address Example 1. To control a GPIB instrument at bus address

9 using a GPIB interface card with logical unit 7, the Address field setting
for theinstrument is 709. See “Logica Unitsand I/O Addressing” on

page 212 for information about the recommended logical units.

GPIB Address Example 2. To control an instrument at bus address 12 using
a GPIB interface card with logical unit 14, the Address field setting is
1412.

VXI Address Example 1. To control aV XI instrument with logical address
28 using an embedded V XI controller with logical unit 16, the Address
field settingis16028. See“Logical Unitsand I/O Addressing” on page 212
for information about recommended logical units. Logical addresses for
VXI instruments are 1 - 255, inclusive.

VXI Address Example 2. To addressa VX instrument with logical address
24 using an HP E1406 GPIB Command Module with bus address 9 viaa
GPIB Interface at logical unit 7, the Address field setting is 70903.

For an HP E1406 Command Module, use a secondary address for the V X I
instrument equal to the instrument’slogical address divided by 8. For logical
address 24, the secondary addressis 3. Thus, the complete addressis 70903.

Serial Address Example. To control an instrument using the COM1 serial
port with logical unit 9, the address field setting for the instrument is 9.
See“Logical Unitsand 1/0O Addressing” on page 212 for information about
recommended logical units.

GPIO Address Example. To control a custom-built instrument using a
GPIO Interface with logical unit 13, the Address field setting for the
instrumentis13. See“Logical Unitsand I/O Addressing” on page 212 for
information about recommended logical units.

Usethe Gateway field set to the name of the LAN gateway used during a
remote process. See “LAN Gateways’ on page 193 for further information.

Click the aAdvanced... button to go to the advanced Instrument
Properties dialog box.

88 Chapter 3

Configuring Instruments
Details of the Properties Dialog Boxes

Advanced Instrument Properties Dialog Box: Gener al
Tab

Figure 3-30 shows an example of the General tab of the Advanced
Instrument Properties dialog box:

Advanced Instrument Properties

General | Direct 0 | Flug&play Driver | Fanel Criver |

Timeout {sec): | E
Live Mode: o} |
Byte Ordering: MSB

Description {optionaly: |

0K | Cancell Helpl

Figure 3-30. The General Tab

The following sections describe the individual fields.

Note The parameters specified in the General tab apply to Direct 1/0,
Panel Driver, and Component Driver objects, but not to
To/From VXIplug&play Objects.

Timeout (sec) Field The Timeout field specifies how many seconds VEE will wait for an
instrument to respond to arequest for communication before generating an
error. The default value of five seconds works well for most applications.

In general, you should not set thisfield to o. If you do, VEE will never detect
atimeout. Certain birect 1/0 transactionsfor register or memory access
of VXI devices do not support atimeout.

Chapter 3 89

Live Mode Field

Byte Ordering Field

Description
(optional) Field

Configuring Instruments
Details of the Properties Dialog Boxes

The Live Mode field determines whether or not VEE will attempt to
communicate with an instrument at the specified address. To communicate
with an instrument connected to your computer, you must set Live Mode
to ON.

If Live Mode isSOFF for aparticular instrument, you can run programs
containing Panel Drivers, Component Drivers, Of Direct I/0
objects that would otherwise read and write to that instrument. However, no
instrument communication actually takes place. This behavior can be useful
if you want to develop or debug portions of a program while instruments are
not available.

Usethisfield to specify the order the device uses for reading and writing
binary data. VEE usesthe valuein thisfield to determineif byte swapping is
necessary. Click this field to choose between MsB (send Most-Significant
Byte first) and LsB (send Least-Significant Byte first). All

|EEE 488.2-compliant devices must default to MSB order. See your device
manual for specific information.

Thepescription fieldistypically used to record the manufacturer’s
model number. For example, the bescription for the HP 54504A
oscilloscope could be hp54504a. Thisfield is provided for your
convenience, but VEE does not useit.

90 Chapter 3

Note

Read Terminator
Field

Configuring Instruments
Details of the Properties Dialog Boxes

Advanced I nstrument Properties Dialog Box: Direct |/O
Tab

Figure 3-31 shows an example of theDirect 1I/0 tab of the advanced
Instrument Properties diaog box (shown for the GPIB Interface):

Advanced Instrument Properties

General |Direct Q) |P|ug&p|ayDriver| Fanel Criver

Read Terminator: IT BERTRETRES lm

Write
EOL Sequence: [ETARIEEE [None 7]
Multi-Field as: Data 0”'\’| State (Learn String): Mot Config'd |
Array Separator: l— Upload String:
Array Format: Linear | '

END (EOI} on EOL: YES D i) il

0K | Cancell Helpl

Figure 3-31. The Direct I/O Tab

The following sections describe the individual fields.

When addressing V X1 devices directly on the VXI backplane, you can use
SCPI messages to control register-based devices, if [-SCPI drivers exist for
them. VEE will inform you if required |-SCPI drivers are not available.

If [-SCPI drivers are not available, you must control register-based devices
by direct read/write access to device registers or device memory. See
“Advanced Instrument Properties Dialog Box: A16 Space (VX1 Only) Tab”
on page 104 or “ Advanced Instrument Properties Dialog Box: A24/A32
Space (VXI Only) Tab” on page 108 for details.

Theread Terminator field specifiesthe character that terminates READ
transactions. The entry in this field must be a single character surrounded
by double quotes. "Double quote” means ASCII 34 decimal. VEE
recognizes any ASCII character asaRead Terminator aswell asthe
escape characters shown in Table 3-1.

Chapter 3 91

Write EOL
Sequence Field

Write Multi-field As
Field

Configuring Instruments
Details of the Properties Dialog Boxes

The character you should specify is determined by the design of your
instrument. Most GPIB instruments send Newl ine after sending data to
the computer. See your instrument programming manual for details.

Table 3-1. Escape Characters

Escape Character ASCII Code Meaning
(decimal)

\n 10 Newline

\t 9 Horizontal Tab

\v 11 Vertical Tab

\b 8 Backspace

\r 13 Carriage Return

\f 12 Form Feed

\" 34 Double Quote

\’ 39 Single Quote

\\ 92 Backslash

\ddd The ASCII character

corresponding to the three-digit
octal value ddd.

The EOL Sequence field specifies the characters that are sent at the end of
WRITE transactionsthat use EOL ON. The entry in thisfield must be zero or
more characters surrounded by double quotes. "Double quote' means ASCI|
34 decimal. VEE recognizes any ASCII characters within EOL Sequence
including the escape characters shown in Table 3-1.

TheMmulti-field As field specifiesthe formatting style for multi-field
datatypesfor WRITE TEXT transactions. The multi-field datatypesin VEE
are Coord, Complex, PComplex, and Spectrum. Other data types and other
formats are not affected by this setting.

Specifying amulti-field format of (...) Syntax surrounds each multi-field
item with parentheses. Specifying bata oOnly omitsthe parentheses, but
retains the separating comma. For example, the complex number 2+2 5§

92 Chapter 3

Write Array
Separator Field

Write Array Format
Field

Configuring Instruments
Details of the Properties Dialog Boxes

could bewritten as (2,2) using (...) Syntax Oras2,2 uUsing Data Only
syntax.

TheArray Separator field specifies the character string used to separate
elements of an array written by WRITE TEXT transactions. The entry in this
fiedld must be aa single character surrounded by double quotes. "Double
guotes' means ASCII 34 decimal. VEE recognizes any ASCII character as
an Array Separator aswell asthe escape characters shownin

Table 3-1.

WRITE TEXT STR transactionsinDirect I/0 objectsthat writearrays
are aspecial case. Inthiscase, thevalueinthe Array Separator fiddis
ignored and the linefeed character (ASCII 10 decimal) is used to separate the
elements of an array. This behavior is consistent with the needs of most
instruments.

VEE alows arrays of multi-field datatypes. For example, you can create an
array of Complex data. Inthiscase, if Multi-Field Format issetto (...)
Syntax the array will be written as:

(1,1)array sep(2,2)array sep ...

where array sep isthe character specified inthe Array Separator
field.

Thearray Format field determinesthe manner in which multidimensional
arrays are written. For example, mathematicians write amatrix like this:

1 2 34 5 67 8 9

V EE writes the same matrix in one of two ways, depending on the setting of
Array Format. |nthetwo examplesthat follow, EOL Sequence issetto
m\n" (newline) and Array Separatorissetto" " (space).

12
4 5 6
7 8 9

w

Block Array Format

123456 789 Linear Array Format

Either array format separates each element of the array with the Array
Separator character. Block Array Format takesthe additional step
of separating each row in the array using the EOL. Sequence character.

Chapter 3 93

Write END (EOI)
On EOL Field
(GPIB Only)

Configuring Instruments
Details of the Properties Dialog Boxes

In the more general case (arrays greater than two dimensions), Block
Array Format OUtpUtS an EOL Sequence character each time a subscript
other than the right-most subscript changes. For example, if you write the
three-dimensional array A [x,y, z] using Block array format with this
transaction:

WRITE TEXT A

an EOL Sequence Will be output each time x or y changesvalue. If thesize
of each dimension in & istwo, the e ements will be written in this order:

Af[0,0,0] A[0,0,1]<EOL Sequences>
Af[0,1,0] A[0,1,1]<EOL Sequences>
<EOL Sequence>

A[1,0,0] A[1,0,1]<EOL Sequences>
A[1,1,0] A[1,1,1]<EOL Sequences>

Notice that after a[0, 1, 1] iswritten, x and y change simultaneously and
consequently two <EOL Sequences>Sare written.

Writing Arrayswith Direct 1/0. WRITE TEXT STR transactions that
write arraysto direct 1/O pathsignore the Array Separator Setting for
thebirect I/0 object. These transactionsaways use linefeed (ASCI|
decimal 10) to separate each element of an array asit iswritten. This
behavior is consistent with the needs of most instruments. (This special
behavior for arrays does not apply to any other type of transaction.)

END on EOL controlsthe behavior of EOI (End Or Identify). If END on
EOL iSYES, the EOI lineis asserted on the bus at the time the last data byte
iswritten under one of the following circumstances:

1. A WRITE transaction with EOL ON executes.

2. A WRITE transaction executes asthe last transaction listed in the
Direct I/0 object.

3. One or more WRITE transactions execute without asserting EOI and are
followed by a non-wrITE transaction, such as READ.

94 Chapter 3

Conformance Field

Binblock Field

Configuring Instruments
Details of the Properties Dialog Boxes

Many instruments accept either EOI or anewline as valid message
terminators. Some block transfers may require EOI. See your instrument’s
programming manual for details.

Conformance specifies whether an instrument conforms to the |EEE 488.1
or |EEE 488.2 standard. See your instrument programming manual to
determine the standard to which your instrument conforms, and then set the
Conformance field accordingly.

Each of these standards defines communication protocols for the GPIB
Interface. However, IEEE 488.2 specifies rules for block headers and learn
strings that are left undefined in IEEE 488.1. All message-based V XI
instruments are | EEE 488.2 compliant, as well as register-based V XI|
instruments supported by [-SCPI drivers.

If you set conformance t0 IEEE 488 (which denotes |EEE 488.1), you
may optionally specify additional settings to handle block headers and learn
strings, as described in the following sections.

The Binblock field specifies the block dataformat used for WRITE
BINBLOCK transactions. Binblock may specify IEEE 728 #a, #T, or #1
block headers. If Binblock iSNone, WRITE BINBLOCK Writesan |EEE
488.2 Definite Length Arbitrary Block Response Data block.

IEEE 728 block headers are of the following forms:

#A<Byte Count><Datas>
#T<Byte Count><Datas>
#I<Data><END>

where:

<Byte Count> isal6-hit unsigned integer that specifiesthe number of
bytes that follow in <Data>.

<Data> isastream of arbitrary bytes.

<END> indicates that EOI is asserted with the last data byte transmitted.

Chapter 3 95

State (Learn String)
Field

Upload String Field

Download String
Field

Configuring Instruments
Details of the Properties Dialog Boxes

The state field indicates whether or not the instrument has been configured
for uploading and downloading learn strings. If the state entry isNot
Config’d” and you want to configure the instrument for use with learn
strings, click the state field and the Upload String and Download
fieldswill appear. If the state entry iSNot Config’d, theUpload
String and Download String fieldsare set to the null string.

Theupload String field specifiesthe command that is sent to the
instrument when you select Upload State fromtheDirect I/0 object
menu. Specify the command that causes the instrument to output its learn
string. See your instrument programming manual for details. You must
surround the command with double quotes.

TheDbownload String field specifiesthe string that is sent to the
instrument immediately before the learn string as the result of awRITE
STATE transactioninabirect I/0 object. Thisfieldisprovidedto
support instruments that require a command prefix when downloading a
learn string. See your instrument programming manual for details.

96 Chapter 3

Plug&play Driver
Name Field

Configuring Instruments
Details of the Properties Dialog Boxes

Advanced Instrument Properties Dialog Box:
Plug& play Driver Tab
Figure 3-32 shows an example of the Plugsplay Driver tab of the

Advanced Instrument Properties dialogbox (shown for the GPIB
Interface):

Advanced Instrument Properties

General | Direct /0 [Plug&play Drive | Panel Driver |
Flug&play Driver Name: | Lnknown 'l

Farameters ta initd call - Download drivers from the Yeb

Address (e.g., GPIBO:12:IMNETR) |GPIEID::14::INSTR To add new drivers to vour systern:

¥ Perform Identification Query 1. Download drivers from the fallowing URL:
¥ Perfarm Reset hitpefieeni agilent.comifindfinst_drivers

2. Install drivers to CIWHIPMNPUWAINGS.

3. Click OK to exit this dialog box.

4. RE-enter this dialog box to see the revised
driver list.

0K | Cancell Helpl

Figure 3-32. The Plug&play Driver Tab

The Plugsplay Driver tabistheonly tab of the advanced
Instrument Properties dialog box that appliesto VXIplug&play driver
configurations.

The following sections describe the individual fields.

Thisfield specifies the name of the V XIplug&play driver. You must select a
driver name, as this parameter is required. The drop-down list displays all

V Xlplug&play driversinstalled. If there are no entriesin the list, either you
do not have any V Xlplug&play driversinstalled or your registry entry or
the environment variable may not be set correctly. See “Introduction to

V Xlplug& play” on page 46 for further information.

Chapter 3 97

Parameters to init()
call Field

Configuring Instruments
Details of the Properties Dialog Boxes

Address. Enter the address that identifies the instrument. The address
format depends on the interface to which the instrument is connected:

B VXI address string (embedded VXI, VXLink, or MXlbus controller).

For aVXI instrument with an embedded, V XLink, or M X1bus controller,
the address string takes the form

VXI[board]::VXI logical address|[::INSTR]
AnexampleisvxI::24::INSTR for aninstrument at logical address 24.
The board number is optional for the first board (VX1::24::INSTRIS
equivalent to vx10: : 24 : : INSTR). However, the board number is

required for subsequent boards (vx11, vx12, and so forth).

B GPIB-VXI address string (command modul€).

For aVXI instrument that is being controlled from a GPIB card
connected to a command module, the address string takes the form

GPIB-VXI [board] :: VXI logical address [::INSTR]

An exampleiSGPIB-VXI: :24::INSTR (Of GPIB-VXIO: :24: : INSTR)
for an instrument at VX1 logical address 24.

B GPIB address string (GPIB instruments).

For anon-V X1 instrument being controlled from a GPIB card, the
address string takes the form

GPIB[board] : :GPIB primary address:: [GPIB secondary
address] [:: INSTR]

AnexampleisGPIB: :23:: INSTR (Of GPIBO: :23:: INSTR) for a
GPIB instrument at primary address 23. (The optional secondary address
israrely used.)

98 Chapter 3

Note

Configuring Instruments
Details of the Properties Dialog Boxes

Perform ldentification Query. Select this check box if you want the driver
to query the instrument for its identification the first time a function panel
for this driver is executed. You generally want to select the check box,
except in the rare case that your instrument does not support this operation.

Perform Reset. Select this check box if you want areset sent to the
instrument the first time a function panel for this driver is executed. You
generally want to select the check box, except in the rare case that your
instrument does not support this operation. Note that all VXI instruments
support this operation.

Download Drivers. If you need anew driver or to update adriver, click on
the URL inthe Advanced Instrument Properties dialog box.

Advanced Instrument Properties Dialog Box: Panel
Driver Tab

Figure 3-33 isan example of the Panel Driver tab of the Advanced
Instrument Properties diaog box:

Advanced Instrument Properties

General | Directlio | Plug&play Driver |

IC Filenarme: hp34401a.cid |
Sub Address: |

Error Checking: ON |
Incremental Mode: o} |

0K | Cancell Helpl

Figure 3-33. The Panel Driver Tab

You can configure register-based V X1 devices as message-based only if they
are supported by I-SCPI drivers.

Chapter 3 99

ID Filename Field

Sub Address Field

Note

Note

Error Checking Field

Incremental Mode
Field

Note

Configuring Instruments
Details of the Properties Dialog Boxes

Thistab isused to configure both Panel Driver and Component Driver
objects. The following sections describe the individual fields.

The ID Filename field specifiesthe file that contains the desired Panel
Driver. Click thefield to display theRead from what Instrument
Driver? dialog box and choose afile. Files are named according to
instrument model number.

Be certain to choose the name corresponding to the exact model number you
are using, asthere are similar file names such ashp3325a.cid and
hp3325b.cid.

The sub address field specifies the subaddress used by certain driversto
identify plug-in modules in cardcage-type instruments, such as data
acquisition systems and switches. If you are not configuring a driver for one
of these plug-ins, set thisfield to " (the NULL string).

Since very few drivers use subaddresses, the default setting of " (the
NULL string) isthe proper setting in ailmost all situations.

If you are configuring adriver for one of these plug-ins, see online help for
the instrument driver to determine if and how subaddresses are used.

Do not confuse the sub Address field with a secondary address for GPIB
instruments. Subaddresses are part of the driver configuration; they are not
part of the hardware address.

TheError Checking field determines whether or not VEE queries
the instrument for errors after setting component values. Set thisfield to on
unless execution speed is not acceptable.

The Incremental Mode field specifies whether or not incremental state
recall is used with Panel Driver objects.

The proper setting for Incremental Mode iSON in amost all situations.

100 Chapter 3

Configuring Instruments
Details of the Properties Dialog Boxes

When Incremental Mode isset to oN, VEE automatically minimizes the
number of commands sent to the instrument to change its state. To do this,
VEE comparesits record of the current state the physical instrument to the
new state specified inthe panel Driver.

V EE determines which component settings are different and then sends only
those commands needed to change components that do not match the desired
state. In most cases, you should set Incremental Mode to ON, Sincethis
mode provides the best execution speed.

When Incremental Mode is set to OFF, VEE explicitly sets the values of
every component when a corresponding Panel Driver operates. This
mode is generally used only when there is a chance that VEE'’s record of the
instrument state does not match the true state of the instrument.

The Incremental Mode Setting affects the operation of Panel Driver
objects, but not component Driver objects. These things do suggest
setting Incremental Mode tO OFF:

B Allowing front panel operation of an instrument while a VEE program is
aso controlling the instrument.

B Changing instrument settings outside of the V EE environment through C
programs, Rocky Mountain Basic programs, or shell commands while a
VEE program is aso controlling the instrument.

Using combinations of Component Drivers, Panel Drivers, and
Direct I/0 objectsinaprogram doesnotimply that you need to set
Incremental Mode tO OFF.

Chapter 3 101

Configuring Instruments
Details of the Properties Dialog Boxes

Advanced Instrument Properties Dialog Box: Serial Tab

Figure 3-34 isan example of the serial tab of the Advanced
Instrument Properties dialog box (valid for serial interfaces only):

Advanced Instrument Properties

General | Direct 0 | Flug&play Driver | Fanel Driver

Baud Rate: | 9600

Character Size: IS—;I
Stop Bits: 1 |
Farity: m
Handshake MNone |
Receive BuferSize [4085

0K | Cancell Helpl

Figure 3-34. The Serial Tab
You can set the following fields for the serial (RS-232) interface:

B Baud Rate —Thedefaultis 9600 (bits per second).

B Character Size —Thedefaultiss (bits). Allowed valuesares, 6, 7,
8, and None.

B stop Bits-—Thedefaultisi1. Allowed valuesare 1 and 2.

B parity—Thedefault isNone. Allowed values are None, 0dd, Even,
Mark, and Space.

B Handshake — Thedefault isNone. Allowed values are None and
Xon/Xoff.

B Receive Buffer Size —Thedefaultis4o096 (bytes).

102 Chapter 3

Configuring Instruments
Details of the Properties Dialog Boxes

Advanced Instrument Properties Dialog Box: GPIO Tab

Figure 3-35 is an example of the cp10 tab of the Advanced Instrument
Properties dialog box (valid for GPIO interfaces only):

Advanced Instrument Properties

General | Direct IO | Panel Driver |

Data Width: a8 |

0K | Cancell Helpl

Figure 3-35. The GPIO Tab

Thecpr1o tab hasonly onefield, Data width. TheData width field
specifies the number of bits of parallel datatransmitted as a unit across the
GPIO interface. Thisfield configures the interface to read and write data
eight or sixteen bits wide. No hardware switches need to be set in
conjunction with this field.

Chapter 3 103

Configuring Instruments
Details of the Properties Dialog Boxes

Advanced I nstrument Properties Dialog Box: A16 Space
(VXI Only) Tab

Figure 3-36 isan example of the a16 Space tab of the Advanced
Instrument Properties dialog box. Thistab appearsonly for the VXI
Interface, and is used only for register-based Direct I/0 transactions.

Advanced Instrument Properties

General | Direct i | Flug&play Driver | Fanel Criver |A24IA32 Space |

Bite Access (DB) NONE | AddRegister | Delete Register |‘
Wiord Access (D1 6) B ACEESS |
MName Offset Format Mode
LongWord Access (D32 MOMNE

0K | Cancell Helpl

Figure 3-36. The A16 Space Tab

The following sections describe the individual fields.

Byte Access (D8) TheByte Access field specifies whether the VXI device supports 8-bit
Field A16 memory accesses. The possible choices for thisfield are:

B NONE - Device does not support byte access.

B ODD ACCESS - Device supports byte access, but only on odd byte
boundaries (D08(O)).

B ODD/EVEN ACCESS - Device supports byte access on all boundaries
(DO8(EQ)).

Word Access (D16) Theword access fieldisnot editable. All VXI devices must support 16-bit
Field access (D16).

104 Chapter 3

LongWord Access
(D32) Field

Add Register Field

Configuring Instruments
Details of the Properties Dialog Boxes

The LongWord Access field specifies whether the V XI device supports
32-bit A16 memory accesses. The possible choices are:

B NONE - Device does not support 32-hit access.

B D32 ACCESS - Device supports 32-bit A16 memory access.

When you click theadd rRegister fidd, it adds arow of fieldsto the
dialog box. These fields allow you to configure access to adevice's A16
memory. The four fields are:

B Name - The symbolic name of the register, which isused to refer to the
particular register inabirect I/O Object usngREAD REGISTER Of
WRITE REGISTER transactions.

B offset - The offset in bytes from the relative base of adevices A16
memory for the register being configured.

B rormat - The dataformat that will be read from, or written to, the
register being configured. The read or write access will take place at the
byte specified in the of £set field. The possible formats are:

U BYTE - Read or write abyte. The device must support and be
configured correctly for 8-bit access by using the BYTE field
discussed above. If the BYTE field is opp, the byte location specified
inthe of fset field must be an odd number.

U worD16 - Read or write a 16-bit word. The 16-bits are represented as
atwo’s complement integer. All VXI devices explicitly support this
format.

Chapter 3 105

Delete Register
Field

An Example

Note

Configuring Instruments
Details of the Properties Dialog Boxes

U worD32 - Read or write a 32-bit word. The 32-bits are represented as
atwao’s complement integer. V EE supports thisformat even if the
LongWord Access field is specified as NONE (by using two D16
accesses to read or write all 32 bits). If the LongWord Access field
is specified asp32 ACCESS, al 32 bits are accessed.

U REAL32 - Read or write a 32-bit word. The 32-bits are represented as
alEEE 754 32-bit floating-point number. V EE supports this format
even if the LongWord Access field is specified as NONE (by using
two D16 accesses to read or write all 32 bits). If the LongWord
Access field is specified asp32 ACCESS, al 32 bits are accessed.

B Mode - Specifies what 1/0 mode the register will support. The choices
are:

U READ - Thisregister will appear asachoicein aREAD REGISTER
transaction only.

U wRITE - Thisregister will appear asachoicein awRITE REGISTER
transaction only.

U READ/WRITE - Thisregister will appear as a choice in both a
READ REGISTER and WRITE REGISTER transaction.

When you click thepelete Register field, it will display alist of the
symbolic names of the currently configured registers. The selected register
will be removed from the dialog box.

Figure 3-37 showsthe 216 Space tab with the register configuration of
an HP E1411B V X1 Multimeter. Note that the list of registers scrolls as
additional registers are added using Add Register.

Anextended (r24/a32 Space) memory configuration would be similar,
but would consist of memory "locations," rather than "registers.”

106 Chapter 3

Configuring Instruments
Details of the Properties Dialog Boxes

Advanced Instrument Properties

General | Direct 0 | Flug&play Driver | Panel Driver Al6 Space |A24IA32 Space |

Biyte Access (D8) MNONE | Add Register | Delete Register | ‘
Wiord Access (D1 6) B ACEESS |
MName Offset Format Mode
LongWord Access (D32 MOMNE |
[stat 4 WORD16 rReAD |

0K | Cancell Helpl

Figure 3-37. The A16 Configuration for the HP E1411B Multimeter

Theoffset field is configured with the offset in bytes of each register from
the relative base of the device's A16 space. The status register (Name: =
stat inthefigure) is configured with a 4-byte offset and is configured for
READ mode.

The control register is not shown in the figure, but typically would be
configured for a 4-byte offset in wRITE mode. While two separate register
locations could have the same mode, the Name field must be unique.
However, it would be possible for the register at byte location 4 to be named
statuscontrol with amode of READ/WRITE.

Chapter 3 107

Note

Byte Access (D8)
Field

Configuring Instruments
Details of the Properties Dialog Boxes

Advanced Instrument Properties Dialog Box: A24/A32
Space (VX1 Only) Tab

Figure 3-38 isan example of the a24/A32 Space tab of the Advanced
Instrument Properties dialog box. Thistab appearsonly for the VXI
Interface, and is used only for register-based Direct I/0 transactions.

Advanced Instrument Properties

General | Direct 0 | FPlug&play Driver | Panel Crriver | A1B Space P24iA32 Space |

Biyte Access (D8) MNONE | Add Location | Delete Location | ‘
Ward Access (D16) B | E e = e |
MName Offset Format Mode
LongWord Access (D32 MNONE
Quadvord Access (D64) NOME

0K | Cancell Helpl

Figure 3-38. The A24/A32 Space Tab

The following sections describe the individual fields.

The term "extended memory" indicates either A24 or A32 memory inaVXI
device. (A VXI device can implement either A24 or A32 memory, but not
both.)

TheByte Access field specifies whether the VX device supports 8-bit
extended memory accesses. The possible choices for thisfield are:

B NONE - Device does not support byte access.

B ODD ACCESS - Device supports byte access, but only on odd byte
boundaries (D08(O)).

B ODD/EVEN ACCESS - Device supports byte access on al boundaries
(DOB(EQ)).

108 Chapter 3

Word Access (D16)
Field

LongWord Access
(D32) Field

QuadWord Access
(D64) Field

Add Location Field

Configuring Instruments
Details of the Properties Dialog Boxes

Theword Access fieldisnot editable. All VXI devices must support 16-bit
access (D16) for al memory spaces.

The LongWord Access field specifies whether the VXI device supports
32-bit extended memory accesses. The possible choices are:

B NONE - Device does not support 32-hit access.

B D32 ACCESS - Device supports 32-bit extended memory access.

The Quadword Access field specifies whether the VXI device supports
64-bit extended memory access. The possible choices are:

B NONE - Device does not support 64-hit access.
B D64 ACCESS - Device supports 64-bit memory access.

Adgilent I/O Libraries G.02.02 supports 64-bit accessto some VXI 1/O
instruments' memory space. This feature enables VEE programs to read/
write memory in 64-bit units for VX1 instruments that support this mode. If
you have version G.02.02 installed, you can use the A24/A 32 Space Tab on
theAdvanced Instrument Configuration diaog box toenable
this access mode.

To enable this mode, first enable QuadwWword access (D64) Accessand
choose format WorRD32*2, or REAL64. |f you choose the worD32*2 format,
a64-bit value is read into two adjacent numbers of the INT32 array.

Location: 1/0 = Instrument Manager (select VXI instrument) = Edit
Instrument = Advanced I/0O Config... A24/A32 Space Tab.

When you click theAdd Location field, it adds arow of fieldsto the
dialog box. Thesefields allow you to configure accessto a device's extended
memory. The four fields are:

B Name - The symbolic name of the location, which is used to refer to the
particular memory locationin abirect I/0 objectusing
READ MEMORY Of WRITE MEMORY transactions.

B offset - Theoffset in bytesfrom the relative base of adevice's extended
memory for the location being configured.

Chapter 3 109

Configuring Instruments
Details of the Properties Dialog Boxes

B Format - Thedataformat that will be read from, or written to, the
location being configured. The read or write access will take place at the
byte specified in the of fset field. The possible formats are:

Q

Q

BYTE - Read or write abyte. The device must support and be
configured correctly for 8-bit access by using the BYTE field
discussed above. If the BYTE field is opp, the byte location specified
inthe of fset field must be an odd number.

WORD16 - Read or write a 16-bit word. The 16-bits are represented as
atwo’s complement integer. All VXI devices explicitly support this
format.

WORD32 - Read or write a 32-bit word. The 32-hits are represented as
atwao’s complement integer. V EE supports thisformat even if the
LongWord Access field is specified asNoNE (by using two D16
accesses to read or write all 32 bits). If the LongWord Access field
is specified asp32 ACCESS, al 32 bits are accessed.

REAL32 - Read or write a 32-bit word. The 32-bits are represented as
alEEE 754 32-bit floating-point number. VEE supports this format
even if the LongWord Access field is specified as NoONE (by using
two D16 accesses to read or write all 32 bits). If the LongWord
Access field is specified asp32 ACCESS, all 32 bits are accessed.

WORD32*32 - Read or write a 64-bit word astwo 32-bit words (astwo
Int32). QuadWord Access Must be enabled.

REAL64 - Read or write a 64-bit word as aREAL64. QuadWord
Access must be enabled.

B Mode - Specify what 1/O mode the location will support. The choices are:

Q

Q

READ - Thislocation will appear as achoicein aREAD MEMORY
transaction only.

WRITE - Thislocation will appear asachoicein awRITE MEMORY
transaction only.

110

Chapter 3

Delete Location
Field

Interface Field

Address Field

Gateway Field

Configuring Instruments
Details of the Properties Dialog Boxes

U READ/WRITE - Thislocation will appear as achoicein both a
READ MEMORY and WRITE MEMORY transaction.

When you click thepelete Location field, it will display alist of the
symbolic names of the currently configured location. The selected location
will be removed from the dialog box.

I nter face Properties

The Interface Properties dialogbox appearsonly when you select an
Interfaceinthe Instrument Manager’sinstrument list, and then click the
Properties button. Figure 3-39 is an example of this dialog box:

Interface Properties B3
Interface: crie
Address: | 7 _%
Gateway: This host |

0K | Cancell Helpl

Figure 3-39. The Interface Properties Dialog Box

The following sections describe the individual fields.

The interface field specifies the type of hardware interface. You can
interchange cp1B with vx1 (both are multiple-instrument buses), or serial
with ap10 (both are single-instrument interfaces).

The address field specifiesthe logical unit for the Interface, affecting all
instruments connected to it. Use the up and down arrows to change the
Address — only thelogical units without conflicts will appear.

Usethe Gateway field set to the name of the LAN gateway used during a
remote process. See “LAN Gateways’ on page 193 for further information.

Chapter 3 111

Configuring Instruments
Details of the Properties Dialog Boxes

112 Chapter 3

Using Transaction I/O

Note

Using Transaction |/O

VEE for UNIX includes objects to communicate with files, printers, named
pipes and other processes. It aso provides the means to communicate with
Rocky Mountain Basic and with hardware interfaces and the instruments
connected to them.

1/0 objects control this communication using transactions. This chapter
explains general concepts common to all objects using transactions,
including:

Creating and Reading Transactions

Using Transaction-Based Objects

Choosing Correct Transactions

Communicating With Files

Communicating With Programs (UNIX) Rocky Mountain Basic
Communicating With Programs (PC)

Using Transactionsin Direct I/O and Interface Operations

It also explains how to use transactionsin Direct 1/O and Interface
Operations.

Related Reading:

I. Haviland, Keith and Salama, Ben, UNIX System Programming. (Addison-
Wesley Publishing Company, Menlo Park, California, 1987).

This book contains information of general interest to programmers

using UNIX. In particular, this book contains explanations of interprocess
communications and pipes that are applicable to with To/From

Named Pipe, To/From Socket, To/From Rocky Mountain Basic
and Execute Program.

114 Chapter 4

Using Transaction 1/O
Creating and Reading Transactions

Creating and Reading Transactions

All I/O objects discussed in this chapter contain transactions. A transaction
specifies alow-level input or output operation, such as how to read or write
data. Each transaction appears as aline of text listed in the

open view of an 1/O object. To view atypical transaction, click

I/0 = To = StringtocreateaTo String object. Figure 4-1 shows

this object.

= Ta ETtring

= Double-Click to Add Transaction =

| <]
result

Figure 4-1. Default Transaction in To String Object
To add atransaction, double click in the object.

Figure 4-2 showsasimple program using the To string object toillustrate
how transactions operate. The program uses two transactions, one to write a
string literal and one to write anumber in fixed decimal format.

—|Realfd slider| = Ta String =
[7.085 =

WRITE TEXT "valueis "

I 10 WRITE TEXT a REALE4 Fli1 EOL
ﬂ = Double-Click to Add Transaction =
8
B
4
2 —| Alphakumeric| -
value is 7.1
I 0

Figure 4-2. A Program Using To String Object

Chapter 4 115

Editing with Mouse
and Keyboard

Using Transaction 1/O
Creating and Reading Transactions

You generally need to do at least two things with a transaction-based object:

1. Add additional transactions as required.

2. Add input terminals, output terminals, or both. Most terminals will be
automatically added as needed—as you add or edit transactions.

Creating and Editing Transactions

Table 4-1 describes briefly how to edit transactions with a mouse.

Table 4-1. Editing Transactions With a Mouse

To Do This...

Click This...

Add another transaction to the end of the list.

Double click in the object,
or add Trans in the object menu.

Move the highlight bar to a different transaction.

Any non-highlighted transaction.

Insert a transaction above the highlighted
transaction.

Insert Trans in the object menu.

Cut (delete) the highlighted transaction, saving it
in the transaction "cut-and-paste" buffer.

Cut Trans in the object menu.

Copy the highlighted transaction to the
transaction "cut-and-paste” buffer.

Copy Trans in the object menu.

Paste the transaction currently in the buffer above
the highlighted transaction.

Paste Trans in the object menu.

Edit the transaction.

Double-click the transaction.

116

Chapter4

Using Transaction 1/O
Creating and Reading Transactions

Table 4-2 describes briefly how to edit transactions with the keyboard.

Table 4-2. Editing Transactions With the Keyboard

To Do This... Press This Key...
Move the highlight bar to the next transaction. CTRL+N
Move the highlight bar to the previous CTRL+P
transaction.
Move the highlight bar to a different transaction. T, 1, Home
Insert a transaction above the highlighted Insert line or CTRL+O

transaction.

Cut (delete) the highlighted transaction, saving it Delete line or CTRL+K
to the transaction “cut-and-paste" buffer.

Paste the transaction currently in the buffer above | CTRL+Y
the highlighted transaction.

Edit the highlighted transaction. space bar

To edit the fields within atransaction, double-click the transaction to expand
ittoan 1/0 Transaction dialog box, asshown in Figure 4-3.

= To String 1=

= Daouble-Click to Add Transaction = result

IO Transaction

[wrme=] [TEXT = H
[DEFAULTFORMAT x| EOLON |

oK | mnNop | cancell

Figure 4-3. Editing the Default Transaction in To String Object

Chapter 4 117

Editing the Data
Field

Using Transaction 1/O
Creating and Reading Transactions

Thefieldsshowninthe1/0 Transaction dialog box are different for

different types of 1/O operations. To change information in afield, click on

the arrow and select from the list that appears. Fields without an arrow

require you to enter text. Click ok to accept the selections and return to the
1/O object.

Clicking NoP saves the latest settings shown in the dialog box, and makes
that transaction a'no operation" or a"no op." Its effect isthe same as
commenting out aline of code in a text-based computer program.

Input and output terminals are added automatically as needed. You can aso
use the Object menu to add or delete terminals.

The datafield requires you to enter text. Figure 4-4 shows an example of a
READ Transaction and what you might enter in the datafield.

I¥/C Transaction

[reso=| | TEXT =] K ———+1— Data Field

[REALG4FORMAT =] | maxnumcHars: |5

|ARRAY2D vI SIZE: |(|2 . |2 1

ok | nNop | cancel

Figure 4-4. READ Transaction Using a Variable in the Data Field

Figure 4-5 shows an example of aWRITE Transaction and what you might
enter in the datafield.

Y0 Transaction

fwriTE=] | TEXT =l [3+2 ———— 1 DataField

[REALG4FORMAT ¥] DEFAULT FIELD WIDTH|

[- = | FxED =] | MUMFRACT DIGITS: |3 EOLONl

ok | mnop | cancel

Figure 4-5. WRITE Transaction Using an Expression in the Data Field

118 Chapter 4

Note

Using Transaction 1/O
Creating and Reading Transactions

WRITE transactions allow you to specify an expression list (variables,
constants and operators), but READ allowsonly avariable list. Table 4-3 lists
typical entries for the data field.

Table 4-3. Typical Data Field Entries

Data Field Entry

Meaning

X (READ) Read data into the variable x.

A (WRITE) Write the value of the variable A.

X, Y (READ) Read data into the variable X and then read
data into the variable Y.

A,B (WRITE) Write the value of the variable A and then
write the value of the variable B.

null (READ only) Read the specified value and throw it
away. null is a special variable defined by VEE.

A,A*1.1 (WRITE only) Write the value of A and then write the
value of A multiplied by 1.1.

"hello\n" (WRITE) Write the Text literal hello followed by a

newline character.

n FR n , Fr’ n M
HZII

(WRITE) Write a combination of Text literals and a
numeric value. If the transaction is WRITE TEXT
REAL and Fr has the Real value 1.234, then VEE
writes FR 1.234 MHZ.

You may include the escape characters shown in Table 4-4 in any field that
accepts text input as a string delimited by double quotes.

READ transactions allow anul1 variable in the data field. Reading datainto
the null variable throws the data away. Thisisuseful for removing unneeded

data.

Chapter 4

119

Using Transaction 1/O
Creating and Reading Transactions

Table 4-4. Escape Characters

Escape Character ASCII Code Meaning
(decimal)
\n 10 Newline
\t 9 Horizontal Tab
\v 11 Vertical Tab
\b 8 Backspace
\r 13 Carriage Return
\f 12 Form Feed
\" 34 Double Quote
! 39 Single Quote
\\ 92 Backslash
\ddd The ASCII character
corresponding to the three-
digit octal value ddd.

Adding Terminals

Vee automatically adds input and output terminals as needed. To add one
manually, click on "Add Termina" in the object menu, or use the keyboard
short cut CTRL+A.

WRITE transactions transfer data from VEE to the destination associated
with the object and require a datainput terminal. A WRITE transaction can
aso write data from a global or an expression such as "abs(globalA)"

READ transactions transfer data from the source associated with the object to
VEE and require a data output terminal.

Variable namesthat appear on the terminal must match the variable namesin
the transaction specification, as shown in Figure 4-6.

120 Chapter 4

Using Transaction 1/O
Creating and Reading Transactions

—| To File =] - From File =]
{ a | ToFie: myFile | From File: myFile || %
[" Clear File At PreRun & Open READ TEXT , y REALG4

WRITE TEXT &, b EOL
= Double-Click to Add Transaction = ¥

These data input terminals... These transaction variables...
...map to these

transaction variables.

...map to these
data outputs.

Figure 4-6. Terminals Correspond to Variables

To edit aterminal variable name, do the following:

1. Doubleclick the terminal to expand it into aTerminal Information
dialog box.

2. Edit the Name field in the dial og box.

Variable namesin VEE are not case-sensitive. Thus, s isthe sasme as s and
Signal isthesameas signal.

Reading Transaction Data

To read datainto avariable, VEE must know either the number of data
elements to read or the specific terminating condition. READ transactions
look for either a specified number of data elements or an end-of-file (EOF)
indication. Specify thisin thelast field of the I/O Transaction dialog box.

Chapter 4 121

Transactions that
Read a Specified
Number of Data
Elements

Using Transaction 1/O
Creating and Reading Transactions

Thelast field in the transaction dialog box has the default value scALAR.
This specifies that the READ transaction isto read only one element. To
change this, click the scarar field and choose from alist of available
choices, as shown in Figure 4-7.

= Frarm File =
From File: rryFile | H
READ TEXT x, v REALG4
m 10 Transaction
P TReaD =] [BiNARY v by
I

SCALAR
ARRAY 1D
ARRAY 2D ok | mnop | cancel
ARRAY 3D
ARRAY 4D
ARRAY 5D
ARRAY 6D
ARRAY 7D
ARRAY 8D
ARRAY 9D
ARRAY 10D

Figure 4-7. Select Read Dimension from List

The choices in the list indicate the number of dimensions for the READ
transaction. For example, scaLar indicates adimension of 0, ARRAY 1D
indicates a one-dimensional array, ARRAY 2D indicates atwo-dimensiona
array, etc.

122 Chapter 4

Using Transaction 1/O
Creating and Reading Transactions

When you select adimension, the transaction dialog box shows afill-in field
for each dimension specified. Figure 4-8 shows a transaction dial og box
configured to read athree-dimensional array of binary integersinto the
variable named matrix. Each of the three fields after s1zE: containsthe
number of integers for the corresponding dimension. (In this case, each
dimension has two elements.)

= Fram File =]

Fram File: myFile | Py

READ BIMNARY matri INT32 ARRA)
= DoublE g =

| rREAD =] | BINARY =]

IEAE
[aRRav3D =] | sz | (2 2 2 i

ok | nop | cancel

Figure 4-8. Transaction Dialog Box for Multi-Dimensional Read

When more than one dimension is specified, the rightmost or "innermost”
dimensionisfilled first. In this example, the elements are read in the
following order:

matrix[0,0,0] readfirst
matrix[0,0,1
matrix[0,1,0
matrix[0,1,1
matrix[1,0,0
matrix[1,0,1
matrix[1,1,0
matrix[1,1,1

]
]
]
]
]
]
]
]

read last

When you click the ok button in the transaction dial og box, the resulting
transaction appears with the ArRraY : keyword followed by the dimension
sizes. For example:

READ BINARY matrix INT32 ARRAY:2,2,2

Chapter 4 123

Read-To-End
Transactions

Using Transaction 1/O
Creating and Reading Transactions

If the transaction is configured to read a scalar value, the transaction appears
asfollows:

READ BINARY x INT32

You can use variable namesin the s1ze: fields to specify array dimensions
programmatically. For example, the following transaction would read a
three-dimensional matrix:

READ BINARY matrix INT32 ARRAY:xsize,ysize,zsize

Inthiscase, xsize, ysize, and zsize could be either the names of input
terminals or the names of output terminals set by previoustransactionsin the
same object.

Certain V EE objects support READ transactions that read to the end-of-file
(eoF). Thismakes it possible to read the contents of afile with asingle
transaction. Such transactions are called read-to-end transactions. EOF,
besides indicating end-of-file for a standard disk file, can also indicate
closure of a named-pipe or pipe.

The following V EE objects support read-to-end transactions:

From File

From String

From Stdin (UNIX)

To/From Named Pipe (UNIX)

To/From Rocky Mountain Basic (UNIX)
Execute Program (UNIX)

To/From DDE (PC)

124 Chapter 4

Using Transaction 1/O
Creating and Reading Transactions

Figure 4-9 shows the transaction dialog box of aFrom File object, reading
athree dimensional array of binary integers, but configured for read-to-end:

= Fram File =

Fram File: myFile | Py

MOP READ BIMARY matrix INT32 ARRAY: y
= Double-Click to Add Transact

YO Transaction

| READ =] | BINARY =] |matrix

[Ntz =
[#rRAY3D =] TEEND)| ¢ = . |2 7 i

ok | nNoP | cancel

Figure 4-9. Transaction Dialog Box for Multi-Dimensional Read-To-End

Read-to-end transactions are not supported for scalars. The transaction must
be configured for at least a one-dimensional array to be configured as read-
to-end. If a VEE object supports read-to-end, the s1zE: field appearsasa
button in the transaction dialog box. Clicking the s1zE : field enables read-
to-end, and the field appearsas ToO END:.

If aone-dimensional array isread to the end, the number of elementsin the
array is unknown until Eor is found. The unknown size of the array is
denoted by an asterisk (*) in the transaction.

When reading a multi-dimensional array is read to the end, the number of
elements must be supplied for each dimension except the left-most or
"outer" dimension. Figure 4-9 shows that this dimension has an (*) in place
of asize in the transaction. This dimension size is unknown until the read-to-
end is transaction complete.

A three-dimensional array is nothing more than a number of two-
dimensional arrays grouped together. A two-dimensional array has the
dimensions of "rows" and "columns'. Stacking two-dimensional arrays
(like cards) adds the third dimension "depth".

Chapter 4 125

Note

Non-Blocking Reads

Using Transaction 1/O
Creating and Reading Transactions

In aread-to-end transaction of athree-dimensional array, the number of
"rows" and "columns" is specified, but the "depth" is unknown until EOF is
encountered. The sameistrue for all multi-dimensional read-to-end
transactions. If the array hasn dimensions, the size of n-1 of those
dimensions must be specified. Only one (the left-most) dimension can be of
unknown size.

In read-to-end transactions of dimensions greater than an ARRAY 1D, the
number of total elements read has to be evenly divisible by the product of
the known dimensions. For example, if the read-to-end example of a three-
dimensional array isfrom afile with 16 total elements, the transaction will
read four two-by-two arrays since the transaction specifies the number of
"rows" and "columns" is equal to 2. Hence, the unknown dimension size,
"depth", is 4 when the read is compl ete.

If the file actually contained 18 elements, one of the two-by-two arrays
would be incomplete. It would contain only two elements. A read-to-end of
this file would result in an error (and no data would be read) if you specified
asize of 2 for the "row" and "column" dimensions. On the other hand, you
could read thisfile if the number of "rows" is equal to 1 and the number of
"columns' isequal to 3. A read-to-end of thisfile would then result in a
"depth” of 6.

If you do not know the absolute number of data elementsin afile, you can
aways use aread-to-end using ARRAY 1D.

The read-to-end transaction is useful with the Execute Program object
for aprogram that is a shell command that will return an unknown number
of elements.

A READ transaction finishes when the read is complete. Until theread is
compl ete, the transaction is said to block. When reading disk files, the
blocking action is not apparent since datais always available from the disk.
However, for named-pipes and for pipes where datais being made available
from another process, a READ transaction could block, effectively halting
execution of a VEE program. In some cases, the READ transaction could
block indefinitely.

TheREAD IOSTATUS DATAREADY transaction provides ameans to peek at
anamed-pipe or pipeto seeif there is data available for arREAD transaction.

126 Chapter 4

Using Transaction 1/O
Creating and Reading Transactions

TheREAD IOSTATUS DATAREADY transactionisavailablein thefollowing

VEE objects:

B To/From Named Pipe (UNIX)

B To/From Socket

B To/From Rocky Mountain Basic (UNIX)
B From StdIn (UNIX)

Note A READ IOSTATUS DATAREADY transaction, when executed, will block
until the named pipe has been opened on the other end by the writing
process. The transaction will then return the status of the pipe.

If the pipe has been closed by the writing process, effectively writing an
EOF into the pipe, the READ IOSTATUS DATAREADY transaction will return
a1, indicating an EOF isin the pipe. A subsequent READ transaction will
generate an EOF error. Use an error pin on the object reading the datato
trap the EOF error.

Chapter 4 127

Using Transaction 1/O
Creating and Reading Transactions

Figure 4-10 shows a program where READ IOSTATUS DATAREADY is used
to detect data on the Stdin pipe.

) |

Until Break
= From Stdin =
READ IOSTATUS DATAREADY % = — "
= Diouble-Click to Add Transaction = o IF g & [LBy
= From Stdin =] -
READ TEXT % STR - =l MEter =l
i 0 500
- 200 300
100 400
— AlphaNumeric = \
1 156

Figure 4-10. Using READ IOSTATUS DATAREADY for a Non-Blocking
Read

Thisprogram is saved in the filemanual47.vee inthe examples
directory.

The program in Figure 4-10 shows the use of aREAD IOSTATUS
DATAREADY transaction in From Stdin. The transaction returnsazero (o)
if no datais present on the stdin pipe. If datais present, aone (1) is returned.
The 1f/Then/Else isused to test the returned value of the READ
IOSTATUS DATAREADY transaction. If theresult is 1, the second From
stdin isalowed to execute, reading the datatyped into the VEE start-up
terminal window.

If no data has been typed into the start-up terminal window (or arReturn has
not been typed), execution continues again at the start of the thread. The
programusesUntil Break to iterate the thread so the From stdin with
the READ TOSTATUS DATAREADY transaction iscontinually tested.

128 Chapter 4

Using Transaction 1/O
Creating and Reading Transactions

To view complete programs that illustrate how to read arrays from files,
open and run the programsmanual27.vee and manual28.vee inthe
examples directory.

Suggestions for Developing Transactions

Many times the best way to devel op the transactions you need is by using
trial and error. A large portion of the data handled by 1/0 transactions is text
(as opposed to some type of binary data). Datawritten as TEXT isvery useful
for experimenting because it is human-readable. While using TEXT is not the
most compact or fastest approach, you can useit to do just about anything.

You can usethe To string object to accurately simulate the output
behavior of other 1/0 objectswriting text. The program in Figure 4-11 shows
one way you might do this.

= To String =

WRITE TEXT "HELLOnin" EOL

WRITE TEXT 255 HEX PREF X" unknown' EOL

WRITE BYTE 65, 66, 67, 68, 68, 10 el
WRITE CASE 2,1, 0 OF "dogin®, "catin®, "birdin" EOL

= Double-Click to Add Transaction =

—|Logging Alphatlume... | «
HELLO =

£t

ABECDE

hird

cat —

dog ﬂ

Figure 4-11. Example: Using To String

Chapter 4 129

Using Transaction 1/O
Using Transaction-Based Objects

Using Transaction-Based Objects

This section gives guidelines for using transaction-based objects, including
execution rules and Object configuration.

Execution Rules

Transaction I/O objects obey all general propagation rules for VEE
programs. In addition, there are afew rules for the transactions themselves.

1. Transactions execute beginning with the top-most transaction and
proceed sequentially downward.

2. Each transaction in the list executes completely before the next one
begins. Transactions within a given object do not executein an
overlapped fashion. Similarly, only one transaction object has accessto a
particular source or destination at atime.

3. Transaction-based I/O objects accessing the same source or destination
may exist in separate threads or the same thread within the same
program.

For file-related objects, thereis only one read pointer and one write

pointer per file. The same pointers are shared by all objects accessing a
particular file.

Object Configuration

In the most genera case, the result of any transaction is actually determined
by two things:

B The specifications in the transaction
B The settings accessed via Properties in the object menu

In most cases you do not need to be concerned about the Properties
settings as the default values are generally suitable.

130 Chapter4

Note

Using Transaction 1/O
Using Transaction-Based Objects

Transaction-based 1/O objects that write data (except Direct 1/0)include
an additional tab in the properties dialog box that lets you edit the data
format. The resulting dialog box alows you to view and edit various
settings.

Direct I/0 objectsincludeashow Config featurein their object menu
that allows you to view (but not edit) configuration settings. To edit the
configuration of abirect 1/0 object, you must use

I/0 = Instrument Manager.

Clicking properties inthe object menu of atransaction I/O object yieldsa
properties dialog box like the onein Figure 4-12.

= To File =]

To File: myFile

[~ Clear File At PreRun & Cpen

= Double-Click to Add Transaction =

To File Properties
General I Colors I Fonts | lcon I

~ Separator Sequence
End OfLine (EOL): [Wn"
Array Separator: "n"

< Data Only < Linear
% (..} Suntax % Block

~Multi-Field Farmat— rrray Farmat—

0K | Cancell Helpl

Figure 4-12. The Properties Dialog Box

Chapter 4 131

End Of Line (EOL)
Field

Array Separator
Field

Multi-Field Format
Field

Using Transaction 1/O
Using Transaction-Based Objects

The Properties dialog box hasabata Format tab containing settings
that affect the way certain datais written by wrRITE transactions. The

End Of Line (EOL) affectsany wrRITE inwhich EOL oN isset. The
remaining Data Format fields affect only WRITE TEXT transactions.

The following sections explain the fieldsin the Data Format tab in detail.

Theend of Line (EOL) field specifiesthe charactersthat are sent at the
end of WRITE transactionsthat use EoL. ON. The entry in thisfield must be
zero or more characters surrounded by double quotes. "Double quote" means
ASCII 34 decimal. VEE recognizes any ASCII characterswithin End of
Line (EOL) including the escape characters shown in Table 4-4.

TheaArray Separator field specifies the character string used to separate
elements of an array written by WRITE TEXT transactions. The entry in this
field must be surrounded by double quotes. "Double quote” means ASCII 34
decimal. VEE recognizes any ASCII character asan Array Separator as
well as the escape characters shown in Table 4-4.

WRITE TEXT STRtransactionsinDirect I/0 objectsthatwritearraysare
aspecial case. In thiscase, thevalueinthe Array Separator fiedis
ignored and the linefeed character (ASCII 10 decimal) is used to separate the
elements of an array. This behavior is consistent with the needs of most
instruments.

TheMulti-Field Format field specifiesthe formatting style for multi-
field datatypesfor WRITE TEXT transactions. The multi-field datatypesin
VEE are Coord, Complex, PComplex and Spectrum. Other data types and
other formats are unaffected by this setting.

Specifying amulti-field format of (...) Syntax surroundseach multi-
field item with parentheses. Specifying bata Only omitsthe parentheses,
but retains the separating comma. For example, the complex number 2+2 5§
could bewrittenas (2,2) using (...) SyntaxOras2,2 using

Data Only Syntax.

132 Chapter 4

Array Format Field

Using Transaction 1/O
Using Transaction-Based Objects

VEE alows arrays of multi-field datatypes. For example, you can create an
array of Complex data. Insuch acase, if Multi-Field Format iSSetto
(...) Syntax,thearray will bewritten as:

(1,1)array sep(2,2)array sep ...

where array sep isthe character specified inthe Array Separator
field.

Thearray Format field determinesthe manner in which multidimensional
arrays are written. For example, mathematicians write amatrix like this:

123
4 5 6
7 8 9

V EE writes the same matrix in one of two ways, depending on the setting of
Array Format.|nthetwo examplesthat follow, End Of Line (EOL) is
setto "\n" (newline) and Array Separator issetton" " (space).

Block Array Format

NC N

3
6
9
3

N oo Ul N

1 4 56 7 8 9 Linear Array Format

Either array format separates each element of the array with the

Array Separator character. Block Array Format takesthe additional
step of separating each row inthe array using the End Of Line (EOL)
character.

In the more general case (arrays greater than two dimensions), Block
Array Format Outputsan End Of Line (EOL) character eachtimea
subscript other than the right-most subscript changes.

For example, if you write the three-dimensional array A [x,y, z] using
Block array format with this transaction:

WRITE TEXT A

aneEnd Of Line (EOL) character will be output each timex or y changes
value.

Chapter 4 133

Using Transaction 1/O
Using Transaction-Based Objects

If the size of each dimensionin a istwo, the elements will be written in this
order:

A[0,0,0] A[0,0,1]<EOL Characters>
Af[0,1,0] A[0,1,1]<EOL Characters>
<EOL Character>

A[1,0,0] A[1,0,1]<EOL Characters>
Af1,1,0] A[1,1,1]<EOL Characters>

After afo, 1,11 iswritten, x and y change simultaneously and
consequently two <EOL Characters>Sare written.

134 Chapter 4

Using Transaction

I/O

Choosing Correct Transactions

Choosing Correct Transactions

This section summarizes various 1/O objects and transactions they support. It
al so suggests a procedure for determining the correct object and transaction
for a particular purpose. For details on transaction encodings and formats,
see Appendix A, “1/O Transaction Reference”. Figure 4-5 and Figure 4-6
summarize transaction-based objects available in VEE and the actions they

support.

Table 4-5. Summary of Transaction-Based Objects

Object

Description

To File

From File

Writes data to a file.

Reads data from a file.

To String

From String

Writes text to a VEE container.

Reads text from a VEE container.

Execute Program
(UNIX)

Spawns an executable file, writes to standard input and
reads from standard output of the spawned process.
Execute Program (PC) is nottransaction based.

To Printer

Writes text to the VEE text printer.

To StdOut
To StdError
From StdIn

Writes data to VEE standard output. (A file on the PC)
Writes data to VEE standard error. (A file on the PC)
Reads data from VEE standard input. (A file on the PC)

Direct I/O
MultiInstrument
Direct I/O

Interface
Operations

Communicates directly with GPIB, VXI, serial, or GPIO
instruments.

Communicates directly with multiple GPIB, VXI, serial, or
GPIO instruments in the same object.

Transmits low-level bus commands and data bytes on an
GPIB or VXI interface.

Chapter 4

135

Using Transaction 1/O
Choosing Correct Transactions

Table 4-5. Summary of Transaction-Based Objects

Object

Description

To/From Named Pipe
(UNIX)

To/From Rocky
Mountain Basic
(UNIX)

Transmits data to and from named pipes to support
interprocess communications.

Transmits data to and from an Rocky Mountain Basic
process via HP-UX named pipes.

To/From DDE (PC)

Dynamically exchanges data between programs running
under Microsoft Windows.

To/From Socket

Uses interprocess communication to exchange data within
networked computer systems.

Table 4-6. Summary of Transaction Types

Action

Description

EXECUTE

Executes low-level commands to control the file, instrument,
or interface associated with the transaction-based object.
This action is used to adjust file pointers, clear buffers, close
files and pipes and provide low-level control of hardware
interfaces.

WAIT

Waits for a specified period of time before executing the next
transaction.

For Direct I/0to GPIB, message-based and I-SCPI-
supported register-based VXI instruments, WAIT can also
wait for a specific serial poll response.

READ

Reads data from the associated object.

WRITE

Writes data to the associated object.

SEND

Sends IEEE 488-defined bus messages (commands and
data) to a GPIB interface.

136

Chapter4

Example: Selecting
an Object and
Transaction

Using Transaction 1/O
Choosing Correct Transactions

Selecting Correct Objectsand Transactions

1. Determinethe source or destination of your 1/0O operation and the formin
which datais to be transmitted.

2. Determinethe type of object that supports the source or destination using
Table 4-5.

3. Determine the correct type of transaction using Table 4-6.

4. To determine the remaining specifications for the transaction, such as
encodings and formats, see Appendix A, “1/O Transaction Reference’”.

For example, assume you need to read afile containing two columns of text
data. Each row contains atime stamp and areal number separated by awhite
space. Each line ends with anewline character. A partia listing of the
contents of thefileis:

14:18:00 1.001
14:18:30 -2.002
14:19:00 1.0E-03

Based on the previous procedure for selecting objects and transactions, the
steps to solve this problem are:

1. Thesourceisatext file. The data consists of atime stamp in 24-hour
hours-minutes-seconds notation and signed real numbersin scientific and
decimal notation.

2. From Table 4-5, the object used to read afileis From File.

3. From Table 4-6, the type of transaction used to read data from afileis
READ.

4. Therequired transactions are:

READ TEXT x TIME
READ TEXT y REAL

Chapter 4 137

Note

Using Transaction 1/O
Choosing Correct Transactions

Using To Sring and From Sring

UseTo String to create formatted Text by using transactions. The Text is
written to a VVEE container.

Use From String toread formatted Text from aVEE container.

If only one string is generated by al thetransactionsinaTo String object,
the output container is a Text scalar. If more than one string is generated by
thetransactionsinaTo String, the output isaone-dimensional array of
Text.

WRITE transactions using EOL ON always terminate the current output
string. This causes the next transaction to begin writing to the next array
element in the output container.

WRITE transactions ending with 2oL, orr will not terminate the output
string, causing the characters output by the next wRITE transaction to
append to the end of the current string. The last transactioninaTo String
aways terminates the current string, regardless of that transaction’s EOL
setting.

For most situations, the proper type of transaction for use with To sString
ISWRITE TEXT. For details about encodings other than TEXT, see Appendix
A, “1/O Transaction Reference”.

From String canread aText scalar or an array depending on the
configuration of the READ TEXT transaction. READ TEXT Will either
terminate a read upon encountering an EOL or will consume the EoL and
continue with the read. Thisis dependent on the format. For details about
formats, see Appendix A, “1/0 Transaction Reference”.

READ and WRITE Compatibility

In general, you must know how data was written to read it properly. Thisis
particularly true when the datain question isin some type of binary format
that cannot be examined directly to determineits format. You must read data
in the same format it was written.

138 Chapter4

Using Transaction 1/O
Communicating With Files

Communicating With Files

This section gives guiddlines for communicating with files, including using
file pointers and importing data.

Using File Pointers

VEE maintains one read pointer and one write pointer per file regardless of
how many abjects are accessing the file. A read pointer indicates the
position of the next data item to be read. Similarly, awrite pointer indicates
the position where the next item should be written. Figure 4-7 shows objects
and source/destination files.

Table 4-7. Objects and Sources/Destinations

Source or Destination Object
Data Files To File, From File
Standard Input From StdIn
Standard Output To Stdout
Standard Error To StdErr

The position of these pointers can be affected by:
B A READ, WRITE, OF EXECUTE action

B ThecClear File at PreRun & Open Settingin the open view of
To File

All objects accessing the same file share the same read and write pointers,
even if the objects are in different threads or different contexts.

A fileis opened for reading and writing when either of these conditionsis
met:

Chapter 4 139

Read Pointers

Write Pointers

Note

Closing Files

Using Transaction 1/O
Communicating With Files

B Thefirst object to access a particular file operates for the first time after
PreRun. Thisisthe most common case.

B New data arrives at the optiona control input terminal that specifies the
file name. This case occurs less frequently.

Atthetime From File opensafile, the read pointer is at the beginning of
the file. Subsequent READ transactions advance the file pointer as required to
satisfy the READ. You can force the read pointer to the beginning of the file
a any time using an EXECUTE REWIND transactioninafrom File object.
Datain thefileis not affected by this action.

Theinitial position of awrite pointer depends on the

Clear File at PreRun & Open Setting inthe openview of To File.
If youenable Clear File at PreRun & Open, thefile contents are
erased and the write pointer is positioned at the beginning of the file when
thefileis opened. Otherwise, the write pointer is positioned at the end of the
file and datais appended.

You can force the write pointer to the beginning of thefile at any time using
an EXECUTE REWIND Of EXECUTE CLEAR transaction. REWIND preserves
any data already in the file. However, new data will overwrite old data
starting at the new position. CLEAR erases data already in thefile.

TheTo DataSet and From DataSet objects also share one read and one
write pointer per filewiththe To File and From File oObjects. However,
MiXing To DataSet and From DataSet operationswith To File and
From File operations on the same fileis not recommended.

VEE guaranteesthat any datawritten by To File iswrittento the operating
system when the last transaction completes execution and all output
terminals have been activated.

The UNIX operating system writes data buffered by the operating system to
disk periodically, typically every 15-30 seconds. This buffered operation is
part of the operating system and is not unique to VEE.

VEE automatically closes all files at PostRun. PostRun occurs when all
active threads finish executing.

140 Chapter 4

Using Transaction 1/O
Communicating With Files

Files may be closed programmatically by using the EXECUTE CLOSE
transactionin both To File and From File. Thisprovidesameansto
continually read or write afile that may have been created by another
process.

Files may also be deleted programmatically by using the EXECUTE DELETE
transaction. Thisis useful for deleting temporary files.

Figure 4-13 shows an example using EXECUTE CLOSE. Thisprogramis
saved inthefilemanual4s.vee inthe examples directory.

= Fnrc-tnunl -
10 L]
| Delay |
Stop |

WhicfioS0 1 WTheniElse |

= Execute Program (UNIX) =i - Execute Program (FC) =
Shell: [sh > \Waitforprog exitt Yes Run Style: Minimized ¥
Shell command: [date = ftmpldateFile Wialtfor prog exit: ‘fes

Exit code 1 y
= Double-Click to Add Transaction = Prog with params: |EDmmand.cDm feover = dosverbd

Working directory: |

= Fram File =

= From File =
Frarn File fimpidateFile From Flle: dosver bt

READ TEXT x 5TR READ TEXT 1 STR Ll
EXECLITE CLOSE EXECUTE CLOSE =
= Double-Click to Add Transaction = = - - o .

—| Logsing Mghalumeric =

Tue Oct 12 12:20:58 MDT 1999
Tue Oct 12 12:20:59 MDT 1999

Tue Oct 12 12:21:00 MDT 1999

Tue Oct 12 12:21:01 MDT 1999

Tue Oct 12 12:21:02 MDT 1999

| Tue Oct 12 12:21:03 MDT 1999

Tue Oct 12 12:21:04 MDT 1999

Tue Oct 12 12:21:05 MDT 1999

Uoer Tue Oct 12 12:21:06 MDT 1999
Tue Oct 12 12:21:07 MDT 1999

Tue Oct 12 12:21:08 MDT 1999

Tue Oct 12 12:21:09 MDT 1999

Figure 4-13. Using the EXECUTE CLOSE Transaction

In Figure 4-13, Execute Program executesashell command (date)

that creates and writes the date and time to afile (/tmp/dateFile).
Within the same thread, aFrom File readsthe date from that file using a
READ TEXT x STR transaction. The EXECUTE CLOSE transactionis
necessary because the subthread is executed multipletimes by For Count.

Chapter 4 141

EOF Data Output

Using Transaction 1/O
Communicating With Files

Succeeding executions of Execute Program Will overwrite thefile.
However, since From File only opensthe file once, upon the second
execution of From File the read pointer will be stale. It will no longer
point to the file because Execute Program hasre-created the file. An
error will occur.

From File must close thefile after reading the data by using an
EXECUTE CLOSE transaction. The EXECUTE CLOSE transaction forces
From File tore-open thefile on every execution.

In the example of Figure 4-13, the error can be shown by using an NOP to
"comment out" the EXECUTE CLOSE transaction. The error will state End
of file or no data found. RemovingtheNop will allow the program
to run normally.

From File supportsaunique dataoutput termina named Eor (end-of-file).
Thisterminal is activated whenever you attempt to read beyond the end of a
file. The EOF terminal is useful when you want to read a file of unknown
length.

The read-to-end feature, discussed in “Reading Transaction Data’ on

page 121, also provides a means of reading afile of unknown length.
However, the contents of thefilewill bein asingle VEE container. If thefile
isto be read an element at atime, with each element residing in its own
container, use the Eor terminal.

Figure 4-14 illustrates atypical use of Eor. Thefile being read containsalist
of x-y data of unknown length. Typical contents of the file are:

.0
.5
.1

o N Ul

142 Chapter 4

Importing X-Y
Values

Using Transaction 1/O
Communicating With Files

O —|Logging Alphaturmeric | |
l rY
Intil Break 5.5
2.1
= From File = -
Fram File: myFile | 1z
: ® 34
READ TEAT % REALG4 .
= Double-Click to Add Transaction = 81
z
3 -

Elre-akl

Figure 4-14. Typical Use of EOF to Read a File

Importing Data

Because V EE provides a convenient environment for analyzing and
displaying data, you may want to import data into VEE from other
programs. The general procedure to use for importing data from another
software application is:

1. Savethedatain atext file (ASCII file).

2. Examinethe datafile with atext editor to determine the format of the
data.

3. UseaFrom File Object withaREAD TEXT transaction to read the data
file.

One very common problem is reading atext file containing an unknown
number of x and Y values and plotting them. The program in Figure 4-15
solves this problem.

Chapter 4 143

Using Transaction 1/O
Communicating With Files

Until Break —| Alphabumeric | «
= From File | ..|
Fram File: irexamplesfmanualimani CD”ectgr
READ TEXT x, v REALG4 —

= Double-Click to Add Trangaction = Collector - AIphaNumenc

O = %us ¥ Plat I~ |

Until Break

—| From File
s
Fram File: rexamplesimanualfiman 4
13 REAE: — YDatal 4 v
0 Add Transaction : o 7 5 o
ECQF |
= Break I K name

Figure 4-15. Importing XY Values

The program in Figure 4-15 is saved in the filemanual29.vee in the
examples directory.

TheREAD TEXT REAL64 transaction easily handles all the different
notations used for v values, including signs, decimals and exponents. A
portion of the datafileis:

8 8.555555

9 9e0

10 1.05e+01

11 +11.

12 12.5

13 1.3E1
Importing Other software applications have many different conventions for saving
Waveforms waveforms astext files. In genera, the file consists of a number of

144 Chapter 4

Using Transaction 1/O
Communicating With Files

individual values that describe attributes of the waveform and a one-
dimensional array of Y values. This section illustrates how to import
waveforms saved using one of these conventions:

B Fixed-format file header. Waveform attributes arelisted in fixed positions
at the beginning of the file, followed by a one-dimensional array of v
data.

B Variable-format file header. A variable number of attributes are listed at
the beginning of the file, followed by a one-dimensional array of v data.
Their positions are marked by special text tokens.

Fixed-Format Header. A portion of the datafile read by the programin
Figure4-16is:

NAME Noisel
START TIME 0.0
STOP_TIME 1.0E-03
SAMPLES 32
DATA
.243545
.2345776

Sincethisisafixed-format header, labels such as NAME and SAMPLES are
irrelevant. The waveform attributes always appear and are in the same
position. Figure 4-16 shows a program that reads the waveform datafile.

Chapter 4 145

Using Transaction 1/O
Communicating With Files

:
- Signal Name =

= Fram File Ir | 1 Moise1
From File: StaIIDirIexampIesImanuaIImanuaIBD.| Mame & - -
READ TEXT null TOKEN Tstat | 35/
READ TEXT Mame TOKEM sind
READ TEXT Tstart REALG4 Tstop ———— Farmula
READ TEXT Tstop REALE4 ——
READ TEXT Samples REALG4 Signal
READ TEXT Signal REALG4 ARRAY Samples
= Double-Click to Add Transaction = Sarnples | e

—_ Waveform (Time)

03 |'|I
Mag gg A I

04 II||||..|| |||
0z | II|| e I.|I|”| v IIIHI
L mantl

0.2
Tracel a4

|
. |'| f| || A | |I

I
AN
||| ||
L

|

o 0.2m 0.4m 0.Em

Time

Figure 4-16. Importing a Waveform File

0.8m m

The program in Figure 4-16 is saved in the filemanual30.vee in your

examples directory.

Thetransactionsin From File do most of the work here. Hereis how each

transaction works:

146

Chapter4

Using Transaction 1/O
Communicating With Files

1. Thefirst transaction strips away the NaME label. This must be done
before attempting to read the string that names the waveform, or NAME
and Noise1l will beread together as a single string.

2. The second transaction reads the string name of the waveform.

3. Thethird through fifth transactions read the specified numeric quantity.
VEE reads and ignores any preceding "extra' charactersin the file not
needed to build a number.

4. The sixth transaction reads the one-dimensional array of v data using the
ARRAY SIZE determined by the previous transaction. samples must
appear as an output terminal to be used in this transaction.

Variable-Format Header. Hereis a portion of the data file read by the
program in Figure 4-17:

First Line Of File
<MARKER1> 1 2 3
<MARKER2> A B C

<DATA>

1 1.1
2 2.2
3 2.9

In this case, the exact contents and position of datain the file are not known.
The only fact known about thisfileisthat alist of xy values followsthe
special text marker <DATA .

To simplify this example, the program in Figure 4-17 finds only the data
associated with <DATA>. In your own applications, you might need to search
for several markers.

Chapter 4 147

Using Transaction 1/O
Communicating With Files

Start = Tem |4

[oaTa=— X - -
<DATA> fa==p | Break |
O —| Logging Alphakumeric | =

Until Break #1 <MARFER1Z =

_ = From File #1 = 1

From File: IDirIexampleesimanualrmanual 2

H MARKER2
READ TEXT % TOKEN | B i

B
A0 ; |
<DATA> hd

Until Break #2 - From File #2

From File: Dirrexamplesrmanuallmanui

- Hws Y Plot -

Y hare 10

oME oo

YDatal

Figure 4-17. Importing a Waveform File

The program in Figure 4-17 is saved in the filemanual31.vee in your
examples directory.

From File #1 readstokens (words delimited by white space) one at a
time, searching for <DATA>. Once <DATA> isfound, From File reads
xy pairsuntil the end of thefileis reached.

148 Chapter 4

Using Transaction 1/O
Communicating With Programs (UNIX) Rocky Mountain Basic

Communicating With Programs (UNIX)

Rocky Mountain Basic

This section gives guidelines for communicating with programs using
UNIX, including:

B Using Execute Program (UNIX)

B Using To/From Named Pipe (UNIX)

B Using To/From Socket (UNIX)

B Using Rocky Mountain Basic Objects (HP-UX)

Table 4-8 shows programs and rel ated objects.

Table 4-8. Programs and Related Objects (UNIX)

Program Object(s)
Shell command Execute Program (UNIX)
C program Execute Program (UNIX)

To/From Named Pipe (UNIX)
To/From Socket

Rocky Mountain Basic Initialize Rocky Mountain
Basic (UNIX)

To/From Rocky Mountain Basic
(UNIX)

Using Execute Program (UNIX)

You can use a VEE program to perform atask that you would normally do
from the Operating System command line. The

Execute Program (UNIX) object allowsyou to do this. Figure 4-18
shows the Execute Program (UNIX) Object. You can use Execute
Program (UNIX) torunany executable fileincluding:

B Compiled C programs
B Shell scripts

B UNIX system commands, such as1s and grep

Chapter 4 149

Using Transaction 1/O
Communicating With Programs (UNIX) Rocky Mountain Basic

= Execute Program (UM =
Shell: |none = \Wait for prog exitt. Yes

Prog with params: |myF'ng -optiona -optionk

WRITE TEXT InData EOL Exit code |1
WRITE TEXT OutData EOL

= Double-Click to Add Transaction =

Figure 4-18. The Execute Program (UNIX) Object

Execute Program The following sections explain the fields visible in the open view of
(UNIX) Fields Execute Program (UNIX).

Shell. shell specifiesthe name of an UNIX shell, such as sh, csh, or ksh.
If the shell field is set to none, thefirst token in the Prog with params

field is assumed to be the name of an executable file, and each token

thereafter is assumed to be a command-line parameter. The executableis
spawned directly as a child process of VEE. All other things being equal,
Execute Program (UNIX) executesfastest when shell issettonone.

If the she11 field specifies a shell, VEE spawns a process corresponding to
the specified shell. The string contained in the Prog with params fieldis

passed to the specified shell for interpretation. Generally, the shell will
spawn additional processes.

150 Chapter4

Using Transaction 1/O
Communicating With Programs (UNIX) Rocky Mountain Basic

Wait for Prog Exit. wait for prog exit determineswhen VEE
compl etes operation of the Execute Program oObject and activates any
dataoutputs. If wait for prog exit issettoves, VEE will:

1. Check to seeif achild process corresponding to the
Execute Program (UNIX) objectisactive. If oneisnot already
active, VEE will spawn one.

2. Execute al transactions specified in the Execute Program object.

3. Close all pipesto the child process and send an end-of-file (EOF) to the
child.

4. Wait until the child process terminates before activating any output pins
of the Execute Program (UNIX) object. If the shel1l fieldisnot set
to none, the shell must terminate to satisfy this condition.

If wait for prog exit iSsettoNo, VEE will:

1. Check to seeif achild process corresponding to the
Execute Program (UNIX) objectisactive. If oneisnot already
active, VEE will spawn one.

2. Execute al transactions specified in the Execute Program object.

3. Activate any data output pins on the Execute Program object. The
child process remains active and the corresponding pipes still exist.

All other things being equal, Execute Program (UNIX) executes fastest
whenwWait for prog exit iSSetto No.

Prog With Params. prog with params Specifieseither:

1. The name of an executable file and command line parameters
(Shell settonone).

2. A command that will be sent to a shell for interpretation
(Shell not set to none).

Chapter 4 151

Running a Shell
Command

Using Transaction 1/O
Communicating With Programs (UNIX) Rocky Mountain Basic

Examples of what you typically typeinto the Prog with params field are:
To run ashell command (Shell set to ksh):

ls -t *.dat | more
To run acompiled C program (Shel1 set to none):

MyProg -optionA -optionB

If you use shell-dependent featuresin the prog with params field, you
must specify a shell to achieve the desired result. Common shell-dependent
features are:

B Standard input/output redirection (< and >)
B File name expansion using wildcards (*, ? and [a-z])
W Pipes(])

Execute Program (UNIX) can be used to run shell commands such as
1s, mkdir and rm. Figure 4-19 shows one method for obtaining alist of files
in adirectory using aVEE program.

= Execute Program (NI = —|A|phaN-umeric| -

Shell: |none = Wizt far prog exit. Yes

12
Exit code -
Prog with params: |(Is ftmp | wee -1 s ftmp -
(IRUGERN READ TEXT Lines INT32 Lines | = ENITE...| =

SJingleBells -
CMusic.dat

- README
»Setvalue bar
Songs
:catalog.agl
Ccontainer
ccontrolAc j

READ TEXT ¥ 8TR ARRAY Lines
= Double-Click to Add Transaction =

-
= 01 M £ I k= O

Figure 4-19. Execute Program (UNIX) Running a Shell Command

The program in Figure 4-19 is saved in the filemanual32.vee inthe
examples directory.

In Figure 4-19, Execute Program (UNIX) determinesthe number of file
namesin the /tmp directory by listing the namesin asingle column (1s -1)

152 Chapter 4

Using Transaction 1/O
Communicating With Programs (UNIX) Rocky Mountain Basic

and piping thislist to aline counting program (wc -1). Because the pipeis
used, the command contained inthe Prog with params field must be sent
to ashell for interpretation. The she11 field is set to sh. The number of
linesisread by theREAD TEXT transaction and passed to the output terminal
named Lines.

The second transaction reads the list of filesin the /tmp directory. The
second transaction reads exactly the number of lines detected in the first
transaction. The shell command is separated by a semicolon to tell the shell
it is executing two commands.

Inthe Execute Program (UNIX),Wait for prog exit iSSetto yes.
In this case, this setting is not very important because these shell commands
are only executed once. The No setting is useful when you want the process
spawned by the Execute Program (UNIX) toremain active whileyour
VEE program continues to execute.

Figure 4-20 shows another method for obtaining alist of filesin adirectory
using a VEE program.

=] Execute Prograrm (UMK =]
Shell [none] Wiaitfor prog et Yes —|Alpha ;lMphaNume... £
Exit code i 0: JingleBells o
Prog with params: |Is ftrnp 1: Music.dat
READ TEXT X BTR ARRAY* 2. README
= Double-Click to Add Transaction = 3 Setvalue.bar
b I 1,
4. 8ongs
A catalog.agl
B container
7

s controlé.c ﬂ

Figure 4-20. Execute Program (UNIX) Running a Shell Command
using Read-To-End

This program is saved in the filemanual50.vee inthe examples
directory.

In Figure 4-20, the VEE program displaysthe contents of the /tmp directory
in asimpler fashion than in Figure 4-19.

Chapter 4 153

Runninga C
Program

Using Transaction 1/O
Communicating With Programs (UNIX) Rocky Mountain Basic

In Figure 4-20, Execute Program (UNIX) hasinthe prog with
params field the single shell command 1s /tmp. Thereisno need to first
obtain the number of filesin the directory, as was done in the program in
Figure 4-19 because the transaction READ TEXT x STR ARRAY:* usesthe
read-to-end feature discussed in “Reading Transaction Data’ on page 121.

When the shell command has executed, it will close the pipe that
Execute Program (UNIX) isusingto readthelist of files. Thissends
an end-of-file (EoF) which terminates the transaction.

The program in Figure 4-21 illustrates one way to share datawith aC
program using stdin and stdout of the C program. In this case, the C
program reads areal number from VEE, adds one to the number and returns
the incremented value.

| Number | -
94 88 =
100 —= -
= = Execute Program (LN =
Exit code 1
Shell: |none * VWait for prog exit. Yes
Frog with params: UUSI’I”b test nplesimanual m # \
2 WRITE TEXT a REALE4 STD EQL a 1
READ TEXT b REALE4
= Double-Click to Add Transaction = h 7
0— -
- — Result F]

55,65

Figure 4-21. Execute Program Running a C Program

The program in Figure 4-21 is saved in the filemanual33.vee inthe
examples directory.

154 Chapter 4

Using Transaction 1/O
Communicating With Programs (UNIX) Rocky Mountain Basic

Figure 4-22 contains alisting of the C program called by the VEE program
in Figure 4-21.

The program listing in Figure 4-22 uses both setbuf and £ f£1ush to force
datathrough stdout of the C program. In practice, either setbuf or
fflush issufficient. Using setbuf (file,NULL) turns off buffering for
al outputto file.Using £f£f1ush (file) flushesany already buffered data
tofile.

#include <stdio.h>

main ()
{
int c¢;
double val;
setbuf (stdout, NULL) ; /* turn stdout buffering off */
while (((c=scanf("%$1f",&val)) != EOF) && c > 0){
fprintf (stdout, "$g\n",val+1l) ;
fflush (stdout) ; /* force output back to VEE*/
}
exit (0) ;

}
Figure 4-22. C Program Listing

Using To/From Named Pipe (UNIX)

To/From Named Pipe isatool for advanced userswho want to implement
interprocess communication. Using hamed pipesin UNIX isnot atask for
casua users as named pipes have some complex behaviors. To learn more
about named pipes and interprocess communication, see the Note about
Related Reading at the beginning of this chapter.

All To/From Named Pipe Objectscontain the same default namesfor read
and write pipes. Be certain you correctly specify the names of the pipesyou
want to read or write. This can be a problem if you run VEE on a diskless
workstation. Be sure that the named pipesin your program are not being
accessed by another user.

VEE creates pipes for you as they are needed. You do not need to create
them outside the V EE environment.

Chapter 4 155

Hints for Using
Named Pipes

Using Transaction 1/O
Communicating With Programs (UNIX) Rocky Mountain Basic

B Becertainthat VEE and the process on the other end of the pipe expect to
share the same type of data. In particular, be certain that the amount of
datasent is sufficient to satisfy the receiver and that unclaimed dataiis not
left in the pipe.

B Use unbuffered output to send datato V EE or flush output buffersto
force data through to VEE. This can be achieved by using non-buffered I/
O (write), turning off buffering (setbuf), or flushing buffers explicitly
(f£1ush).

Here are examples of the C function calls used to control buffered output to
VEE:
setbuf (out_pipel,NULL) Turnsoff output buffering.
or
fflush(out_pipel) Flushesdatato VEE.
or
write (out_pipe2,data,n) Whitesunbuffered data.

where out_pipe1lisafilepointer and out pipe2 isafiledescriptor for
theRead Pipe specifiedin To/From Named Pipe.

VEE automatically performs similar flushing operations when writing data
to apipe. VEE does the equivalent of an ££1ush when either of these
conditionsis met:

B Thelast transaction in the object executes.
B A WRITE transaction isfollowed by anon-wrRITE transaction.

To/From Named Pipe supportsread-to-end transactions as described in
“Reading Transaction Data’ on page 121. To/From Named Pipe aso
SuUpports EXECUTE CLOSE READ PIPE and

EXECUTE CLOSE WRITE PIPE transactions. These transactions can be
used for inter-process communications where the amount of data to read and
write between VEE and the other processis not explicitly known.

156 Chapter4

Using Transaction 1/O
Communicating With Programs (UNIX) Rocky Mountain Basic

For example, suppose VEE is using named-pipes to communicate with
another process. If VEE iswriting data out on a named pipe and the amount
of dataislessthan that expected by the reading process, the reading process
will hang until there is enough data on the named-pipe.

By using an EXECUTE CLOSE WRITE PIPE transaction, the named-pipeis
closed when an eor (end-of-file) is sent. Thus, an EOF will terminate most
read function calls (read, fread, fgets, €tc...), allowing the reading
process to unblock and still obtain the data written by VEE into the pipe.

Conversely, if VEE isthe reading process, a READ transaction using the
read-to-end feature allows V EE to read an unknown amount of datafrom the
named-pipe if the writing process performsa close () on the pipe, sending
an EoF. Another way to avoid aread that will block indefinitely isto use the
READ IOSTATUS transaction. See Appendix A, “1/O Transaction Reference”
for more information about using READ IOSTATUS transactions.

Using To/From Socket

TheTo/From Socket objectisfor advanced users who want to implement
interprocess communication for systems integration. Using socketsis not a
task for casual users as sockets have some complex behaviors.

Sockets let you implement interprocess communication (1PC) to allow
programsto treat the LAN as afile descriptor. IPC impliesthat there are two
sockets involved between two or more processes on two different
computers. Instead of a simple open()/close() interface as used in the
To/From Named Pipe object, sockets use an exported address and an
initial caller/receiver strategy, referred to as a connection-oriented protocol.

In a connection-oriented protocol, also known as a client/server
arrangement, the server must obtain a socket, then bind an address known as
the port number to the socket. After binding a port number, the server waits
in ablocked state to accept a connection request. To call for a connection,
the client must obtain a socket, then use two elements of the server'sidentity.

The elements include the port number the server bound to its socket and the
server's host name or | P address. If the server's host name cannot be resolved
into an |P address, the client must use the | P address specifically. After the
server accepts the client's connection request, the connection is established

Chapter 4 157

To/From Socket
Fields

Using Transaction 1/O
Communicating With Programs (UNIX) Rocky Mountain Basic

and normal |/O activities can begin. Figure 4-23 shows an example of the
To/From Socket Object.

—| Toffram Socket =] =] Toffram Socket =]
Bind Part I Connect Port [soo1
Host Mame: default Host Mame: IW
LI Tirneout: [60 LI Timeout: [&0
WRITE TEXT x TR WRITE TEXT a STR EQOL

= Double-Click to Add Transaction = = Double-Click to Add Transaction =

Figure 4-23. The To/From Socket Object

TheTo/From Socket object containsfields that let you do the following:
B Connect to abound socket on aremote computer.

B Bind a socket on the computer on which VEE is running and wait for a
connection to occur.

Of the four available fields, values of the following three fields can be input
as control pins to the object:

B Connect/Bind Port Mode
B Host name
B Timeout

The following sections explain the fields visible in the To/From Socket
open view.

Connect/Bind Port Mode. Connect/Bind Port M ode comprises two fields,
the mode button and the text field. The mode button toggles between Bind
port and Connect Port. Thetext field letsyou enter the port number.
Allowed port numbers are integers from 1024 through 65535.

Numbers from 0 through 1023 are reserved and will cause arun-time error
if you use them. Port numbers above 5000 are commonly called transient

158 Chapter4

Using Transaction 1/O
Communicating With Programs (UNIX) Rocky Mountain Basic

and are the range of numbers you should use. Table 4-9 shows the range of
integers allowed for socket port numbers.

Table 4-9. Range of Integers Allowed for Socket Port Numbers

Number Range Reserved for ...
0—1023 operating system
1024—5000 commercial or global application®
5001—65535 internal or closed distributed applications

a. Usually involves a registration process.

Host Name. If themodeissetto Bind Port, thisfield displays the name
of the host computer on which VEE is running. You cannot change thisfield
to the host name of aremote computer because it is not possible to bind a
port number to a socket on aremote computer.

If the modeis set to Connect Port, you can edit thisfield. Enter the host
name or | P address of the remote computer to which you want to connect.
The host name must be resolvable to the IP address. If ahost nametableis
not available on the network to trand ate the host name to an | P address, you
must enter the specific address, such as 15.11.29.103.

Timeout. Timeout letsyou enter an integer value that represents the
timeout period in secondsfor all READ and WRITE transactions. This timeout
periodisalso in effect for theinitial connection whenthe To/From Socket
object isset either inthesind Port mode waiting for a connection to
occur, or inthe connect Port mode waiting for a connection to be
accepted. Thisvalueisignored if the remote host does not exist or is down.
In this case, the VEE interface is frozen until the connection fails, which
may take up to one minute.

Transactions. The To/From Socket object usesthe same normal 1/0O
transactions used by the To/From Named Pipe object. READ and WRITE
transactions support all datatypes. See Appendix A, “1/0 Transaction
Reference” for detailed information about transactions.

Chapter 4 159

Data Organization

Object Execution

To/From Socket
Object Example

Using Transaction 1/O
Communicating With Programs (UNIX) Rocky Mountain Basic

All binary datais placed on the LAN in network-byte order. This
correspondsto Most Significant Byte (M SB) or Big Endian ordering. Binary
transactions will swap bytes on READS and WRITES, if necessary. This
impliesthat any other process that VEE is connected to will need to conform
to this standard. In the previous example, the server process could have been
little endian ordered while the client could be big endian ordered. Byte
swapping done by VEE isinvisible.

A To/From Socket object set to bind a socket at a port number uses the
timeout period waiting for a connection to occur. Concurrent threadsin VEE
will not execute during this period. The timeout value can be set to zero,
which disables timeouts, potentially making the period waiting for a
connection infinitely long. Any timeout violation causes an error and halts
VEE execution.

Once a connection has been established the instruments perform the
transactions contained in the transaction list. All READ operations will block
for the timeout period waiting for the amount and type of data specified in
the transaction. To avoid potential blocked threads, usethe READ I0STATUS
transaction to detect when data is available on the socket.

To specifically terminate aconnection, use the EXECUTE CLOSE transaction.
All socket connections established in a VEE program are broken when a
program stops executing. Whichever way connections are broken, the server
and client objects must repeat the bind-accept and connect-to protocols to
re-establish connections. EXECUTE CLOSE should be used as a mutually
agreed-upon termination method and not merely an expedient way to flush
data from a socket.

Multiple To/From Socket objects share sockets. All objectsthat are
binding an identical port number share the same socket. All objects that are
configured with identical port numbers and host names to attempt
connection to the same bound socket share the same socket. The overhead of
establishing the connection isincurred in the first execution of one of the
commonly configured objects.

Figure 4-24 shows aV EE program that usesthe To/From Socket object to
provide a separate server process for data acquisition using the

HP E1413B. This server can honor client requests to initialize instruments,
acquire and write datato disk, and shutdown and quit. During the acquisition

160 Chapter4

Using Transaction 1/O
Communicating With Programs (UNIX) Rocky Mountain Basic

phase data is read from the Current Value Table in the A/D and sent to the

client.

Thefirst To/From Socket object to execute, connected to the until
Break object, binds a socket to port number 5001 on the host computer
named hpj tmxzz and waits 180 seconds for another process to connect to

that socket.

Note the use of an error pin to avoid a halt due to atimeout. In this case,
that object is executed again and waits another 180 seconds for a connection.
After the connection has been made, the object then blocks on the READ
transaction waiting for the client to send a command. Again, if atimeout
occurs on the READ, the object executes again and blocks on the READ

transaction.

Timeout: I 180

Host Mame: hpjtm=zz
Timeout: | 180

O =] [/ Then/Else = _j—u It Instruments |
Unitil Break —1 fstrUp(A)=="nt" . -
——— [trUp(A)=="auit Else If i——————— Shutdown
= To/From Socket = A irUp(A)—"Acquire" Eiself |
Bind Port ||W Eloe = —| To/From Socket | «|
Host Name: | hpjmxzz | | Bind Port |[so01

Acguire

[

—| For Count | « 4 To File |

[o

To/From Socket

<]

WRITE TEXT "Data Fifo Half?" EOL ﬂ —
READ BINBELOCK x REAL32 ARRAY™
WRITE TEXT "Data CWT? (@100,105,107.116)" EOL
READ BINBELOCK x REAL32 ARRAY™

—ta]

Bind Port ||~ 5001
= mirrars (hpe1413 @ 16032) = 5001
Host Mame: hpitrmxzz
Timeout; [a0

WRITE BINA

Figure 4-24. To/From Socket Binding Port for Server Process

Chapter 4

161

Using Transaction 1/O
Communicating With Programs (UNIX) Rocky Mountain Basic

Figure 4-25 shows the client side of the service described previously. The
first To/From Socket Object to execute waits, sleeping, for the attempted
connection to occur. Unlike the server, any timeout error causes the program
to error and halt. The first object sends the commands Init and Acquire
then executes the loop to read the cvT.

= To/From Socket = l
Connect Port “T =] TofFrom Socket =
Haost Name: [itz | ConnectPort |[~ s001 |
Timeout: [&0 | Host Mame: [hptmz |

i X
WRITE TEXT "Init" EOL Timeout 2 =

WRITE TEXT "Acquire" EOL FEAD BINARY x REALS2 ARRAY:4
—| For Count | = ~ Strip Chart =
_ I
| 10 - 1
— Al0] Y name - i
100m/ = e
B [— i
—| To/From Socket [< » fracet | | 4
— AlT] ~ — — i
Connect Port | 200 Trace2
Host Mame: | — —
hipjtrz - Traced - B ey B
Timeout | 60 — A2 |—| - i
WRITE TEXT "Quit’ EOL JUEEEN | :
— [_,_,—ﬁ'-"_'-)—___
- | (21 P S PR N AN A P R T
— A[S] o 20
Step Size: 1 K name 2f

Figure 4-25. To/From Socket Connecting Port for Client Process

Using Rocky Mountain Basic Objects (HP-UX)

TheInitialize Rocky Mountain Basic and To/From Rocky
Mountain Basic Objectsareavailablein al versions of VEE. They work
only in programs that run on HP 9000 Series 700 systems.

The Rocky Mountain Basic objects are tools for advanced users who want to
communicate with Rocky Mountain Basic processes. See “Using To/From
Named Pipe (UNIX)” on page 155 for general information about using pipes
with VEE.

162 Chapter 4

Initialize Rocky
Mountain Basic

To/From
Rocky Mountain
Basic

Using Transaction 1/O
Communicating With Programs (UNIX) Rocky Mountain Basic

Initialize Rocky Mountain Basic SpawnsaRocky Mountain Basic
process and runs a specified Rocky Mountain Basic program.

Enter the compl ete path and file name of the Rocky Mountain Basic
program you wish to execute in the program field. The program may bein
either STOREd or SAVEd format.

Initialize Rocky Mountain Basic doesnot provide any data path to
or from the Rocky Mountain Basic process. Use To/From Rocky
Mountain Basic for that purpose.

You can use morethan one Init Rocky Mountain Basic oObjectina
program and you can use more than one in asingle thread.

Thereisno direct way to terminate a Rocky Mountain Basic process from a
VEE program. In particular, PostRun does not attempt to terminate any
Rocky Mountain Basic processes. PostRun occurs when all threads complete
execution or when you press stop. You must provide away to terminate the
Rocky Mountain Basic process. Possible waysto do this are:

B Your Rocky Mountain Basic program executesaQUI T statement when it
receives a certain data value from VEE.

B AnExecute Program object killsthe Rocky Mountain Basic process
using a shell command, such as rmbkil1l.

If you cut an Initialize Rocky Mountain Basic whilethe
associated Rocky Mountain Basic processis active, VEE automatically
terminates the Rocky Mountain Basic process. When you Exit VEE, al
Rocky Mountain Basic processes started by VEE are terminated.

The To/From Rocky Mountain Basic Object supports communications
between a Rocky Mountain Basic program and V EE using named pipes.

Type in the names of the pipesyou wish to useinthe Read Pipe and
Write Pipe fields. Be certain they match the names of the pipes used by
your Rocky Mountain Basic program and the read and write names are not
inadvertently swapped relative to the Rocky Mountain Basic program. Use
different pipesfor the To/From Rocky Mountain Basic objectsin
different threads.

Chapter 4 163

Examples Using To/
From Rocky
Mountain Basic

Using Transaction 1/O
Communicating With Programs (UNIX) Rocky Mountain Basic

Sharing Scalar Data. Consider a case where you want to:

1. Start Rocky Mountain Basic.

2. Run aspecific Rocky Mountain Basic program.

3. Send asingle number to Rocky Mountain Basic for analysis.

4. Retrieve the analyzed data.

5. Terminate Rocky Mountain Basic.

Figure 4-26 showstypical To/From Rocky Mountain Basic Settings

= TolFrarm Rocky Mauntain Basic =

Wirite Pipe hmpﬁn_rmb

! @ | ReadPipe ltrmpsfrom_rmb
WRITE TEXT a REALG4 STD ECL
'WRITE TEXT a REALG4 5TD

1 X = Dauble-Click to Add Transaction =

Figure 4-26. To/From Rocky Mountain Basic Settings
The corresponding Rocky Mountain Basic program is:

100 ASSIGN @From vee TO "/tmp/to_rmb"
110 ASSIGN @To vee TO "/tmp/from rmb"
120 ! Your analysis code here

130 ENTER @From vee;Vee data

140 OUTPUT @To_vee;Rmb_data

150 END

To view an example program that solves this problem, open the
manual34.vee example.

164 Chapter 4

Using Transaction 1/O
Communicating With Programs (UNIX) Rocky Mountain Basic

Sharing Array Data. To share array data between VEE and Rocky
Mountain Basic using TEXT encoding, you must modify the default
Array Separator iNTo/From Rocky Mountain Basic. Todothis,
click properties inthe To/From Rocky Mountain Basic object
menu and click the Data Format tabinthe Properties dialog box. Set
theArray Separator fieldto ", " (acommafollowed by ablank).

Be sure that VEE and Rocky Mountain Basic use the same size arrays.

The order in which VEE and Rocky Mountain Basic read and write array
elementsis compatible. If VEE and Rocky Mountain Basic share an array
using READ and WRITE transactionsin To/From Rocky Mountain
Basic, each element has the same value in VEE asin Rocky Mountain
Basic.

To view an example program that shares arrays between VEE and Rocky
Mountain Basic, open the manual3s.vee example.

Sharing Binary Data. It is possible to share numeric data between VEE and
Rocky Mountain Basic without converting the numbersto text. To do this,
select BINARY encoding inthe To/From Rocky Mountain Basic
transactions and FORMAT OFF for the ASSTGN statements that reference the
named pipes in Rocky Mountain Basic.

There are only two cases where it is possible to share numeric datain binary
form:

B VEE BINARY REAL64 isequivaent to Rocky Mountain Basic REAL

B VEE BINARY INT16 isequivaentto Rocky Mountain Basic INTEGER

Chapter 4 165

Using Transaction 1/O
Communicating With Programs (PC)

Communicating With Programs (PC)

This section gives guidelines to communicate with programs using a PC,
including:

B Using Execute Program (PC)
B Using Dynamic Data Exchange (DDE)

Table 4-10 shows programs and related objects.

Table 4-10. Programs and Related Objects (PC)

Program Object(s)
MS-DOS command Execute Program (PC)
Windows Application? Execute Program (PC)

To/From DDE (PC)
To/From Socket

C program Execute Program (PC)
Import Library

Call Function
Formula

a. VEE for Windows supports ActiveX automation, which lets
you control other Windows applications. For information about
using this feature, see Chapter 13, “Using ActiveX Automation
Objects and Controls’.

Using Execute Program (PC)

You can use The Execute Program (PC) object to perform atask you
would normally do from the Operating System command line. Figure 4-27
shows an example of the Execute Program (PC) object. You can use
Execute Program (PC) torunany executable fileincluding:

B Compiled C programs

B Any MS-DOS program (* . EXE or * . coM files)

B _BaATfiles

166 Chapter4

Execute Program
(PC) Fields

Using Transaction 1/O
Communicating With Programs (PC)

B MS-DOS system commands, such asdir

= Execute Program (PC) =

Run Style: MHaormal v|

Wait for prog exit: Yes

Exit code 1

Frog with params: |

Working directony: |

Figure 4-27. The Execute Program (PC) Object

The following sections explain the fields visible in the open view of
Execute Program (PC).

Run Syle. If the program you want to execute runs in awindow, Run
Style specifiesthe window style:

B Normal runsthe program in a standard window.
B Minimized runsthe program in awindow minimized to anicon.

B Maximized runsthe programin awindow enlarged to its maximum size.

Wait for Prog Exit. wait for prog exit determineswhen VEE
compl etes operation of the Execute Program (PC) object and activates
any dataoutputs. If wait for prog exit issettoves, VEE will:

1. Execute the command specified inthe Execute Program (PC) oObject.

2. Wait until the process terminates before activating any output pins of the
Execute Program (PC) object.

Chapter 4 167

Using Transaction 1/O
Communicating With Programs (PC)

If wait for prog exit iSsettoNo, VEE will:
1. Execute the command specified inthe Execute Program (PC) object.
2. Activate any data output pins on the Execute Program (PC) object.

All other things being equal, Execute Program (PC) executes fastest
whenwWait for prog exit iSSettoNo.

Prog With Params. prog with params specifieseither:
1. The name of an executable file and command line parameters.
2. A command that will be sent to MS-DOS for interpretation.

If you have included the appropriate path in the PATH variable in your
AUTOEXEC. BAT file, you do not need to include the path in the

Prog with params field. Examples of what you typically typeinto the
Prog with params field are:

To execute aMS-DOS command:
COMMAND.COM /C DIR *.DAT
To run acompiled C program:
MyProg -optionA -optionB
To open aURL in abrowser:
http://www.agilent.com/find/vee
To open adocument:

D:\path\word.doc

Working Directory. Wworking directory pointsto adirectory where the
program you want to execute can find files it needs. For example, if you
want to run the program nmake using the makefile in the directory
c:\progs\cprogl:

1. InProg with params:, enter nmake.

168 Chapter4

Note

Using Transaction 1/O
Communicating With Programs (PC)

2. InWorking directory:, enter c: \progs\cprogl.
Using Dynamic Data Exchange (DDE)

DDE is an obsolete (but still supported) feature. VEE for Windows supports
ActiveX Automation, which lets you control other Windows applications.
For information about using this feature, see Chapter 13, “Using ActiveX
Automation Objects and Controls’. New versions of Microsoft applications,
such as Office 2000, may no longer support DDE. Agilent highly
recommends using ActiveX Automation, instead of DDE.

Dynamic Data Exchange (DDE) defines a message-based protocol for
communication between Windows applications. This communication takes
place between a DDE client and a DDE server. The DDE client requests the
conversation with the DDE server. The client then requests data and services
from the server application. The server responds by sending data or
executing procedures.

A Windows application that supports DDE may act as either aclient, a
server or both. VEE for Windows provides only client capabilities. It
implements DDE capabilities with the To/From DDE object.

The VEE for Windows To/From DDE object uses four types of transactions:

READ (REQUEST) Reads Data from a DDE transfer.
WRITE (POKE) Writes (pokes) Data to a DDE transfer.

EXECUTE Sends a command to the DDE server that VEE
for Windows is communicating with. The server then
executes the command.

WAIT Waits for the specified amount of time (in seconds).

The To/From DDE object initiates and terminates DDE operations as part of
its function. You do not need to explicitly perform the initiate and terminate
functions.

Asshown in Figure 4-28, the To/From DDE object has three main fields,
Application, Topic, and Timeout.

Chapter 4 169

Using Transaction 1/O
Communicating With Programs (PC)

- TolFrom DDE [r]

Application; [Excel
Tapic: [Sheett

Tirmeout: |5

= Double-Click to Add Transaction =

Figure 4-28. The To/From DDE Object

Inthe Application field enter the DDE application name for the Windows
application that you want to communicate with. Generally, thisisthe . EXE
file name. See the manual for each specific application to determineits DDE
application name.

The Topic field contains an application-specific identifier of the kind of
data. For example, aword processor’s topic would be the document name.

The Timeout field lets you specify the timeout period for VEE to wait
if the application does not respond. The default value is five seconds.

The last field contains transactions to communicate with the other
application. For READ (REQUEST) and WRITE (POKE) transactions, you
must also fill in an Ttem namein the transaction. An Ttem nameisan
application-specific identifier for each piece of data. For example, a
spreadsheet dataitem might be a cell location, or aword processor dataitem
might be a bookmark name.

The To/From DDE object in Figure 4-29, communicating with the MS
Windows Program Manager, creates a program group, adds an item to the
group, displaysit for 5 seconds and then del etes the program group.

170 Chapter 4

Using Transaction 1/O
Communicating With Programs (PC)

= TofFrom DDE =

Application; [Proghan

Topic: [progran

Timeout: |5

EXECUTE CMMD:"[CreateGroup(DDE Test)]"

EXECUTE CMMD:"[Addiem{CWWEEWEE.EXE, DDE TEST)]"
WWAIT INTERWAL:S

EXECUTE CMMD:"[DeleteGraupiDDE Testi]"

= Double-Click to Add Transaction =

Figure 4-29. The To/From DDE Example

If the server DDE application is not currently running, VEE attempts to start
that application. Thiswill only be successful if the application’s executable
file name is the same as the name in the application field. The executable
file's directory must also be defined in your paTH. VEE will try to start the
application for the amount of time entered in the Timeout field.

If the executable file's directory isnot in your PATH, USe an Execute
Program (PC) object beforethe To/From DDE object to run the
application program, as shown in Figure 4-30.

Chapter 4 171

Using Transaction 1/O
Communicating With Programs (PC)

= Execute Program (PC) =
Run Style: | Marmal vl
Wait for prog exit: Mo
—I Ewxit code

Prog with params: |e}{ce|

Working directony: |c:1.excel

|

To/From DDE =

e

aApplication: [Excel
Topic: [Eheett
Tirmeout: |5

WRITE ITEM:"r2c3" TEXT "Some data” STR EOL

= Double-Click to Add Transaction =

Figure 4-30. Execute PC before To/From DDE

The examplein Figure 4-31 showsthe use of input and output terminalswith

aTo/From D

—| Interest | |
|EE3

—| vears | 4]

DE object.

= To/From DDE =
Application: [Excel

ﬂ Topic: [sheett
Timeout: |5

Ja0

h WRITE ITEM:"r1c1" TEXT a EOL
WRITE ITEM:"r1c2" TEXT h EOL

—|Loan Amount| «

ISDDD

= Double-Click to Add Transaction =

—|AlphaMumeric | =

Figure 4-31. I/O Terminals and To/From DDE

172

Chapter4

DDE Examples

Using Transaction 1/O

Communicating With Programs (PC)

Figure 4-32 through Figure 4-36 are examples of communication with
various Windows software applications. Read the Note Pad ineach
example for important information regarding the example.

—_ Execute Program (PC)

<]

Run Style: | MNormal vl
‘Wait for prog exit: Mo |

Progwith params: [t 23w

Exit code |

Waorking directary: |C:1123W

— ToiFrom DDE

= Note Pad -

Application: [123w

Topic: [system

flote that DDE to Lotus 123 for Windows
iz documented for client only. To make
it a serwer, you can execute a command

Timeout: |5

sing the followmg syntax:

= Double-

[run i ocommandy)]T

Figure 4-32. Lotus 123 DDE Example

- Mote Pad =

= Execute Program (PG)

|]

ote that DDE to Excel recquires
that you use R4C3 syntad to

Run Style: I Marmal 'I
Wirait for prog exit: Mo |

specify cell C4 {row 4, col 3). EXHBDdB|
Prog with params: |exce|
Waorking directory: |C:‘texce|
= To/From DDE =]
application: [Excel
—|cellvalug| | Topic: [sheett
|3.1 ﬂ Timeout |5
Figure 4-33. Excel DDE Example
Chapter 4 173

Using Transaction 1/O
Communicating With Programs (PC)

= Execute Program (PC) =
= Note Pad -
Run Style: | Marmal :l'
. ” ote that DDE to Reflections can =
‘Wait for prog exit: Mo | Exitcode| se the topic "Systew”, "RCLY, or
Prog with pararns: |R1W|N "Settings”. This example requests
) . data from "SystemIten”. Other items
Wiorking directony: |C:1R1WIN are "Topics”™, "Formats™, or "Status”.
1so note that Feflections allows the
ser to change the Application name
from "R1Win" to anything else. -
- ToiFrom DDE =
Application: |R1WIN
Topic: |System
Tirmeout: |5— | —|AlphaMumeric | =
¥
READ ITEM:"sysitems" TEXT x 5TR
= Double k to Add Tr: tion =
Figure 4-34. Reflections DDE Example
= Execute Program (P2 = = Mote Fad F
Run Style: I Mormal jv ote that DDE to winword

‘Wait for prog exit:

1o |

Exit code |

Prog with params: [C:twinwordireport.doc

ses bookmarks, like "Data’
in this example. &lso, Top:

Wiarking directony:

[bwinword

st be a full path name.

—| To/From DDE

Topic:
—|Data valug| «| orie

E1az — a |

Timeout:

Application: Winword
Cwinwordireport.doc
|5

WRITE ITEM:"Data" TEXT a EOL

= Doubl 1 Add Tra oh =

Figure 4-35. Word for Windows DDE Example

174

Chapter4

Using Transaction 1/O
Communicating With Programs (PC)

= Execute Program (PC) =

= Note Pad -
IR I Mormal jv Exitcgde| ote that DDE to WordPerfect can use =
Wait for prog exit; Yes the topics "Commands™ or "System”.

is example executes the WordPerfect

Frog with params: IC;\,wpwimrepon item "MacroPlay™. The program could hawve

also requested data from items "SysItem”,
Working directory: |C:1wpwin "Topics™, or "Formats"”.

-

- ToiFrom DDE =

Application: fWordPerfect

Topic: Jrommands

Timeout: |5

EXECUTE CMMND:"MacroPlayiMacroMame'test wemiy"

Figure 4-36. WordPerfect DDE Example

Chapter 4 175

Note

Note

Using Transaction 1/O
Using Transactions in Direct I/O and Interface Operations

Using Transactionsin Direct I/O and
| nter face Operations

Three VEE objects allow you to communicate with instruments using
I/0O transactions:

B TheDirect I/0 objectalowsyou totransmit datato and from
instruments viathe GPIB, VXI, serial, and GPIO interfaces and viaa
LAN connection.

B TheMultiInstrument Direct I/0 objectalowsyou to perform
direct 1/0 transactions to multiple instruments from a single object.

B TheInterface Operations object allowsyou to send low-level
GPIB or VXI messages, commands, and data.

Register-based V X| devices can be used as message-based only if supported
by I-SCPI drivers.

For any of these objects, the messages are "constructed" and sent by means
of 1/0 transactions. This chapter describes some techniques for using 1/0
transactionsinthe Direct I/0,MultiInstrument Direct I/0, and
Interface Operations Objects.

You must properly configure VEE to communicate with instruments before
you can usetheDirect I/0,Multilnstrument Direct I/0,and
Interface Operations objects. See Chapter 3, “Configuring
Instruments” for details.

176 Chapter 4

Sending Commands

Using Transaction 1/O
Using Transactions in Direct I/O and Interface Operations

Using the Direct I/0O Object

TheDpirect 1/0 objectalowsyou control aninstrument directly using the
instrument’s built-in commands. You do not need a VEE instrument driver
(ID) or VXlplug&play driver to use Direct I/0 tocontrol aninstrument.

Use WRITE transactions to send commands to an instrument using Direct
1/0. The most important WRITE transactions for sending commands to
GPIB, message-based V XI, register-based VX| supported by I-SCPI, and
seria instruments are:

U WRITE TEXT
O WRITE BINBLOCK
U WRITE STATE

Direct I/ousesonly WRITE BINARY and WRITE IOCONTROL
transactions to send commands to GPIO instruments.

Direct I/0USESWRITE REGISTER and WRITE MEMORY transactionsto
send commands to register-based and some message-based V X1
instruments. These transactions are the only method of communicating with
register-based VX | instruments not supported by 1-SCPI drivers.

WRITE TEXT Transactions. WRITE TEXT transactionsare all you need to
set up instruments for the mgjority of all situationswhere birect 1/01is
required. Most GPIB, message-based VXI, and serial instruments use
human-readable text strings for programming commands. Such commands
are easily sent to instruments using WRITE TEXT transactions.

For example, al instruments conforming to | EEE 488.2 recognize *RST asa
reset command. The transaction used to reset such an instrument is:

WRITE TEXT "*RST" EOL

Instruments often define very precise "punctuation” in their syntax. They
may demand that you send specific characters after each command or at
the end of agroup of commands. In addition, GPIB instruments vary in their
use of the signal line End-Or-1dentify (EOI).

If you suspect you are having problemsin this area, examine the
END (EOI)on EOL and EOL Sequence fieldsinthebirect 1/0tab
of the Advanced Instrument Properties dialog box. See Chapter 3,

Chapter 4 177

Note

Using Transaction 1/O
Using Transactions in Direct I/O and Interface Operations

“Configuring Instruments’. See your instrument programming manual to
determine the proper command syntax for your instrument.

Direct I/0alowsyoutousewRITE encodingsother than TEXT whenitis
required by the instrument. The encodings other than TEXT that are most
often useful are BINBLOCK and STATE.

WRITE BINBLOCK Transactions. BINBLOCK encoding writes datato
instruments using | EEE-defined block formats. These block formats are
typically used to transfer large amounts of related data, such as trace data
from oscilloscopes and spectrum analyzers. Instruments usually require a
significant number of commands before accepting BINBLOCK data. See your
instrument's programming manual for details.

To use BINBLOCK transactions, you must properly configure the
Conformance field (and possibly Binblock) inthebirect 1/0tab

of the Advanced Instrument Properties dialog box. See Chapter 3,
“Configuring Instruments’.

WRITE STATE Transactions. Some GPIB and message-based V X |
instruments support alearn string capability, which allows you to upload al
of theinstrument settings. Later, you can recall the measurement state of the
instrument by downloading the learn string using awRITE STATE
transaction. Learn strings are particularly useful when you wish to downl oad
measurement states but an instrument driver is unavailable.

WRITE STATE transactions are available for GPIB and message-based V XI
instruments only.

A typical procedure for using learn stringsis:

1. Configure the instrument to the desired measurement state. Typically,
thisis done using the instrument front panel.

2. Click upload state inthe object menu of abirect 1/0 object
configured for the instrument. The instrument state is now associated
with this particular instance of theDirect 1/0 object.

3. AddawRITE STATE transactiontotheDirect I/0 object.

178 Chapter 4

Using Transaction 1/O
Using Transactions in Direct I/O and Interface Operations

Whenitisused, WRITE STATE isgeneraly thefirst transactionin a
Direct I/0C object. WRITE STATE writesthe Uploaded learn string to
the instrument, setting all instrument functions simultaneously. Subsequent
WRITE transactions can modify the instrument setup in an incremental
fashion.

The behavior of Upload and wrRITE STATE for GPIB and message-based
VXI instrumentsis affected by the Direct 1/0 tab settings for
Conformance and State (Learn String).

If Cconformance iISTEEE 488.2, VEE automatically handles learn strings
using the IEEE 488.2 *L.rN? definition. If Conformance iSIEEE 488,
Upload String specifiesthe command used to query the state, and the
Download String specifiesthe command that precedes the string when it
is downloaded.

Message-based V X1 instruments and register-based VX1 instruments
supported by I-SCPI are IEEE 488 .2 compliant.

Clicking Upload state inthebirect I/0 object menu hasthese results:

B Thelearn string is uploaded immediately.

B Thelearn string remains with that particular birect 1/0 object aslong
asit exists, until the next upload. Thelearn string is saved with the

program.

B If youcloneabirect I/0 object, itsassociated learn stringisincluded
in the clone.

Learn Sring Example. For example, suppose you want to program the
HP 54100A digitizing oscilloscope using learn strings. Important facts for
the oscilloscope are:

B The oscilloscope conformsto | EEE 488. It does not conform to
|IEEE 488.2.

B The command used to query the oscilloscope’s learn string is SETUP?.

Chapter 4 179

Reading Data

Note

Using Transaction 1/O
Using Transactions in Direct I/O and Interface Operations

B The seTur command must precede alearn string that is downloaded to
the instrument. A spaceisrequired between the p in sSeTuP and the first
character in the downloaded learn string.

You must use the Instrument Manager (See Chapter 3, “Configuring
Instruments”) to specify the proper direct 1/0 configuration for the
oscilloscope. Figure 4-37 shows settings for learn strings

Advanced Instrument Properties

General Direct If | Flug&play Driver | Fanel Driver | A16 Space | AZ41A37 Space |

Read Terminator: [Conformance: [1EEE 485 =]

Write

6L SequEis | " Binhlock: #A =
Multi-Field as: Data Only State (Learn String): Configured | These fields
Array Separator; [control

Upload String: | "SETUPY q
AT e Linear_| learn string
. Diownload String: | "SETUP%‘ —
END (EQ[on EOL: NGO |

0K | Cancell Helpl

Figure 4-37. Configuring for Learn Strings

To upload alearn string from the oscilloscope, click Upload in the object
menu of abirect 1/0 objectthat controls the oscilloscope. To download
the learn string, use this transaction:

WRITE STATE

To read data from an instrument using Direct I/0,YyOU Can USe READ
transactions.

Instruments return datain avariety of formats. In general, you must know
what kind of data and how much data you want VEE to read from an
instrument. The kind of data determines the encoding and format you must
specify in the transaction. The amount of data being read determines the
configuration you must use for the SCALAR or ARRAY fieldsin the
transaction dialog box.

180 Chapter4

Note

Note

Using Transaction 1/O
Using Transactions in Direct I/O and Interface Operations

The most important READ transactions for birect I/0 usewith GPIB,
message-based V XI, and serid instruments are:;

U READ TEXT
U READ BINBLOCK

Direct I/0usesonly READ BINARY and READ IOSTATUS transactionsto
read data from GPIO instruments.

Direct I/OUSESREAD REGISTER and READ MEMORY transactionsto read
data from register-based and some message-based V X| instruments. These
transactions are the only method of communicating with register-based V XI
instruments not supported by [-SCPI.

If you have difficulty reading data from instruments, try using the
Bus I/O Monitor toexamine the dataformat.

READ TEXT Transactions. Frequently, the data you read from an
instrument as the result of aquery isasingle numeric value that is formatted
as text. For example, a voltmeter returns each reading as a single number in
exponential notation, such as -1.234E+00. Thetransaction to read avalue
from the voltmeter is:

"READ TEXT a REAL"

Some instruments respond to a query with a phabetic information combined
with the numeric measurement data. In general, this not a problem since
READ TEXT REAL transactions discard preceding a phabetic characters and
extract the numeric value.

When reading numeric data from an instrument, the data type of the
instrument data is automatically converted, if necessary, according to the
ruleslisted in Appendix C, “Instrument 1/O Data Type Conversions’.

Using the M ultil nstrument Direct 1/0 Object

TheMultiInstrument Direct I/0 object(I/0—= Advanced I/0=
MultiInstrument Direct I/0) letsyou control several instruments
from asingle object using direct 1/0 transactions. The object is a standard
transaction object and works with al interfaces that VEE supports.

Chapter 4 181

Transaction Dialog
Box

Using Transaction 1/O
Using Transactions in Direct I/O and Interface Operations

It appearsthe ssme astheDirect I/0 object, except each transactionin
MultiInstrument Direct I/0 canaddressaseparateinstrument. Since
theMultiInstrument Direct I/O objectdoesnot necessarily control a
particular instrument asthe Direct 1I/0 object does, thetitle doesnot list
an instrument name, address, or live mode condition.

By usingtheMultiInstrument Direct I/0,Yyou canreducethenumber
of instrument-specific Direct 1/0 objectsin your program, which
optimizes icon-to-icon interpretation time. This performance increase is
especialy important for the VXI interface, which isfaster than GPIB at
instrument control.

Figure 4-38 showstheMultiInstrument Direct I/0 objectandits1/
0 Transaction dialog box configured to communicate with four
instruments.

— multilnstrument Direct 100 =

WRITE "dmim2" TEXT "Initcon” EQL

WRITE "dvm" TEXT a EOL i'
WRITE "Serial1" TEXT a EQL

I/0 Transaction

[Twre = INEEE] DefauItAddressl | 17 =l
DEFAULT f jmmz2 OLONl

dvm
newlnstrument

ok | mop | cancel

Figure 4-38. Multilnstrument Direct 1/O Controlling Several Instruments

TheI/0 Transaction dialog box issimilar to the one used by

Direct I/0,exceptitcontainstwo additional fields. The common fields
work the same way. The following sections describe the two additional
fields.

Instrument Field. The Instrument Field containsthe name of any of
the currently configured instruments. Clicking the down arrow presentsalist

182 Chapter 4

Using Transaction 1/O
Using Transactions in Direct I/O and Interface Operations

of available configured instruments. You can select adifferent instrument for
each transaction.

AddressField. Theaddress Field specifiesthe address of the device
showinginthe Instrument Field. TheAddress Field hastwo modes:
Default Address and Address:.

Default Address SetsVEE to usethe address entered when the
instrument was originally configured. Address : includes atext box that
lets you enter a different address.

You can enter a specific numeric value, a variable name, or an expression.
The entry must evaluate to avalid address. The value entered for Address::
will change the device's address when the object executes, which is like the
address control pin action. Figure 4-39 showsthe 1/0 Transaction
dialog box using Address:.

— Muliinstrurnent Direct 0 =
WRITE "dvm" TEXT a EOL ﬂ

WRITE "dmim2" TEXT "Initcon” EQL
WRITE "Serial1" TEXT a EQL

I/0 Transaction

[wrRITE =] [newinstument x| [Address: | Jteozs [e =l o
[DEFAULT FORMAT v] |EOLON|

ok | mop | cancel

Figure 4-39. Entering an Instrument Address as a Variable

Editing Transactions Asyou edit transactionsusing the /0 Transaction dialog box, only
those transactions allowed by the type of instrument are accepted. For
example, if the name showing inthe Instrument Field isconfigured asa
V X1 device controlled viathe VXI backplane, you can configure a
REGISTER OF MEMORY acCess transaction.

If the1/0 Transaction dialog box isconfigured for a particular type of
transaction and you change the Instrument Field name, the transaction

Chapter 4 183

Object Menu

The EXECUTE
Transaction

Using Transaction 1/O
Using Transactions in Direct I/O and Interface Operations

must remain correct for the different instrument. If the transaction is
incorrect, entriesinthe 1/0 Transaction dialog box will change to the
last valid transaction for that instrument type. A REGISTER access
transaction for a VX1 device will be incorrect if you change the
Instrument Field nameto anon-VXI instrument.

The object menu for MultiInstrument Direct I/Oissimilar to that of
thepirect 1/00Object. TheMultiInstrument Direct I/0 menudoes
not include the show Config... or Upload State menu choices. These
menu choices are for specific instrument configurations. Usethe Direct
1/0 object to show an instrument’s configuration or to upload a physical
instrument’s settings.

There isno live mode indicator for any of the possible devicesin the
transactions. To control live mode for an instrument, click 1/0 =
Instrument Manager..., and then edit the selected instrument
configuration.

Using the Interface Operations Object

The Interface Operations object (I/0 = Advanced I/0=
Interface Operations) alowsyou to control GPIB, VXI, and serial
instruments using low-level commands. Interface Operations
supports two types of transactions that provide this low-level control:
EXECUTE and SEND.

EXECUTE transactions are of the form:;
EXECUTE Command

where Command is one of the bus commands summarized in Table 4-11.
While the commands listed in Table 4-11 have the same names as the
EXECUTE commandsin Direct I/0,thereisanimportant difference.

B Direct I/O EXECUTE commands address an instrument to receive the
command.

B Interface Operations EXECUTE commands may affect multiple
instruments. For GPIB, these instruments must be addressed to listen.

184 Chapter 4

The SEND
Transaction

Using Transaction 1/O

Using Transactions in Direct I/O and Interface Operations

Table 4-11. Summary of EXECUTE Commands (Interface Operations)

Command Description

ABORT Clears the GPIB interface by asserting the IFC (Interface Clear)
line. To clear and reset the VXI interface use CLEAR

CLEAR Clears all GPIB devices by sending DCL (Device Clear). For
VXI, resets the interface and runs the Resource Manager.

TRIGGER For GPIB, triggers all devices addressed to listen by sending
GET (Group Execute Trigger). For VXI, triggers TTL, ECL, or
external triggers.

REMOTE For GPIB, asserts the REN (Remote Enable) line. There is no
counterpart for VXI.

LOCAL For GPIB, releases the REN (Remote Enable) line. There is no
counterpart for VXI.

LOCAL For GPIB, sends the LLO (Local Lockout) message. Any device
LOCKOUT in remote mode at the time LLO is sent will lock out front panel
operation. There is no counterpart for VXI.

LOCK In a multi-process system with shared resources, lets one
INTERFACE process lock the resources for its own use during a critical
section to prevent another process from trying to use them.
UNLOCK In a multi-process system where a process has locked shared
INTERFACE resources for its own use, unlocks the resources to allow other

processes access to them.

PASS CONTROL

Passes control to a GPIB device at the specified address,
provided the device is capable of becoming the active
controller. There is no counterpart for VXI.

SEND transactions are of this form:

SEND BusCmd

where BusCmd is one of the bus commands listed in Table 4-12. These
messages are defined in detail in IEEE 488.1. Buscmd is GPIB specific
only. There are no counterparts for VXI.

Chapter 4

185

Using Transaction 1/O
Using Transactions in Direct I/O and Interface Operations

Table 4-12. SEND Bus Commands

Command Description

COMMAND Sets ATN true and transmits the specified data bytes. ATN true indicates that the
data represents a bus command.

DATA Sets ATN false and transmits the specified data bytes. ATN false indicates that the
data represents device dependent information.

TALK Addresses a device at the specified primary bus address (0-30) to talk.
LISTEN Addresses a device at the specified primary bus address (0-30) to listen.
SECONDARY Specifies a secondary bus address following a TALK or LISTEN command.

Secondary addresses are typically used by card cage instruments where the card
cage is at a primary address and each plug-in module is at a secondary address.

UNLISTEN Forces all devices to stop listening; sends UNL.

UNTALK Forces all devices to stop talking; sends UNT.

MY LISTEN ADDR | Addresses the computer running VEE to listen; sends MLA.

MY TALK ADDR Addresses the computer running VEE to talk; sends MTA.

MESSAGE Sends a multi-line bus message. Consult IEEE 488.1 for details. The multi-line
messages supported by VEE are:

DCL Device Clear

SDC Selected Device Clear
GET Group Execute Trigger
GTL Go To Local

LLO Local Lockout

SPE Serial Poll Enable
SPD Serial Poll Disable
TCT Take Control

186 Chapter4

Advanced 1/O Topics

Advanced 1/0O Topics

This chapter covers the following advanced instrument 1/0O topics:

B |/O Configuration Techniques
B |/O Control Techniques
B Logical Unitsand I/0O Addressing

188 Chapter5

Changing the
Configuration File

Advanced 1/O Topics
I/O Configuration Techniques

|/O Configuration Techniques

This section provides information about instrument configuration with VEE.
Agilent is making the instruments formerly made by HP. In general,
instrument model numberswill remain the same but be preceded by Agilent,
instead of HP. Because so many V EE users have instruments with the HP
brand, we often use that nomenclature in this manual to avoid confusion.

Thel/O Configuration File

The /O configuration for each program can be embedded in the program file
(recommended) or stored as a separate file. If it is stored as a separatefile, it
isthe VEE.IO file (vee.io in UNIX). Thisfileis stored in the following path:

$userprofile%$\Local Settings\Application
Data\Agilent\VEE Pro

onaPC, or in your $HOME directory on aUNIX system.

When you configure instruments in a new program that does not contain an
embedded configuration, the new settings are saved in memory for the
remainder of your work session and inthe VEE. 10 or .veeio file.

When the I/O configuration is saved with the program, the save buttonin
Instrument Manager is disabled. To keep the configuration, click OK and
save the program. This saves the updated configuration with the program.

You cannot open any program containing an instrument control object unless
your 1/0 configuration contains a device with amatching Name. In this
discussion, Name means the entry in the Name field in the Instrument
Properties dialog box, not the text in the object’s title bar.

If the objectisaPanel Driver Or Component Driver, theID
Filename must also match your configuration. Settings other than Name
and ID Filename do not affect your ability to open these programs,
athough other settings may affect how the programs run.

Generally, VEE takes care of the VEE. 10 or .veeio file. However, there
are situations when you may want to erase, update, or copy this file outside
the VEE environment

Chapter 5 189

Note

Advanced /O Topics
I/O Configuration Techniques

If you want to run an instrument control program developed by someone
e se, but the I/O configuration is not embedded with the program, you need
the I/O configuration that program uses. There are three waysto get it:

1. You can manualy add al of the instrumentsto your configuration using
the Instrument Manager and configuration dialog boxes.

2. You can copy the VEE. 10 or .veeio filefor that program to your
Agilent directory (for aPC), using the path given at the beginning of this
section, or $HOME directory (for UNIX).

If you use the file copying method, save a copy of your original VEE. 10
file to another name (such as VEETO. OLD) in case you heed it later. For
UNIX systems, make surethat any .veeio file you placein your $HOME
directory has write permissions set to allow VEE to write to it.

3. You can save the program with the embedded configuration. Use the
Save As option and be sure the " Save I1/O configuration with program’
option is checked.

Example programs were saved with embedded /O configuration so the I/O
configuration is self-contained. They do not depend on an external 1/0
configuration file.

Programmatic I/O Configuration

You can programmatically modify your instrument configuration. The
preferred way of programing the 1/O configuration isto use the
programmatic instrument configuration in the Function and Object Browser.
Figure 5-1 shows the browser window with Instruments selected in the Type
window. Selecting Instruments activates the Create Set Formula button at
the bottom of the window.

190 Chapter5

Advanced I/O Topics
I/O Configuration Techniques

Function & Object Browser
Type: Instrument Categony: mMembers:

Operatars B!

Built-in Functions GPIO Instrument E& enableEDI
MATLABR Functions Serial Instrument B colSequence
Local User Functions WHI Instrument & hosthame
Imported User Functions & interfaceType
Remaote User Functions : E& pnpResource
Compiled Functions CORMEMTE s IR, & readTerm

ActiveX Ohjects E& timeout
YEE Ohjects dvrm
Instruments

PROPERTY address As Int32
For GPIB and Y&l instruments it is an interface and bus address like 722, For serial and
GPRID instruments itis an interface address like 9.

Create Get Formula| Create Set Formula Close Help

Figure 5-1. Function and Object Browser

Clicking Create Set Formula brings up the Formula Object dialog box
shown in Figure 5-2.

Chapter 5 191

Advanced /O Topics
I/O Configuration Techniques

—_ I hp3478a address = value: =

i value | [©-hp3478a.address = value,

Figure 5-2. Create Set Formula Dialog Box

Previous versions of VEE allowed programmatic configuration through
control pins. These pins are obsolete but still supported. Control pins are
availablefor the Panel Driver, Component Driver, andDirect I/O
instrument control objects that let you input other values for device address
and timeout. Control pinsfor setting timeout values are also available for the
Interface Operations, Instrument Event, and Interface Event
objects.

When anew timeout or address is sent to one of the control pins, the new
value is changed globally for that device. This means that all instrument
control objects communicating with a particular device begin using the new
timeout or address value. The new value can be different from that entered
in the Instrument Properties dialog box and placed in the VEE configuration
file. However, this new valueis never written to the VEE configuration file.

The examplein Figure 5-3 showsabDirect I/0 objectwithanaddress
control pin. The HP E1413B is originaly configured for address 16032 as
shown in thetitle bar. The input to the control pin is 16040 (the new
address). When the control pinis sent the new address, 16040 is used for any
other objects communicating with the HP E1413B.

192 Chapter5

Advanced 1/O Topics
I/O Configuration Techniques

—| mirrors (hpe1413 @ 16032) | «|
—| Integer | « |
|1ED4D - — — — 1| Address

= mirrors (hpeld13 @ 16032) =

Main Panel

Init Cont

Arm Trun

- Number Polnts_ FIF.— Abhort
rany [- status NG

Figure 5-3. Programmatically Reconfiguring Device I/O

LAN Gateways

VEE can access LAN gatewaysto control instruments. A LAN gateway isa
controller that allows accessto its VXI, GPIB, GPIO, and Serial interfaces
and the instruments on these interfaces from a remote process.

The client-server model best represents the arrangement. A VEE process
acts as the client when accessing a LAN gateway on a remote computer, the
server. The server has a committed process, known as a daemon, which is
part of the SICL process running on the server. The daemon communicates
with the VEE client and allows access to its interfaces and their devices.

The client process calls SICL in order to control devices on the interfaces
that SICL supports. These interfaces are usually configured on the LAN
gateway on which the SICL processisrunning. By using the LAN gateway,
these interfaces can be on a remote computer.

Asfar asthe client is concerned, the fact that the interfaces and their devices
are attached physically to aremote computer isinvisible.

Chapter 5 193

Configuration

Advanced /O Topics
I/O Configuration Techniques

You must configure VEE and the LAN hardware to use the LAN gateway.

VEE Configuration. Configure VEE for gateway access during device
configuration, as described in Chapter 3, “Configuring Instruments’. Figure
5-4 showsthe Instrument Properties dialogbox. The Gateway field
shows its default setting, This host:

Instrument Properties

Mame: |hp344[|1a
Interface: | GPIB 'I

Address {eg 7143 714
Gatewway: This host |

Ok | Cancell Helpl

Figure 5-4. Gateway Configuration

You can select the gateway name by clicking the Gateway field. A list box
appears showing all of the gateways that have been configured previously.
This host aways pointsto the computer on which VEE is running.

If there are no other choices for gateways, you can type in a gateway name.
The name must be resolvable to an | P address either by a symbolic host
name table or by a name-server. You can aso enter an | P address in dot-
format, suchass55.55.55.555.

Beyond selecting a gateway, the configuration process remains the same.
Panel Driver andDirect I/0 objectsareconfigured asbefore. Figure
5-5 shows various 1/O devices configured for interfaces and devices on
remote computers.

194 Chapter5

Advanced I/O Topics
I/O Configuration Techniques

—|funcgen thp331 20 @710 on send) | «] —| Bus i3 Manitor (w16 on seri2 @16) =
Function | Caosine j »x Wed 08/Mar/2000 14:06:42

Frequency | 200

Amplitude | 1 -

DcOffset | 0 = SRG: GPIBT an senrl =
Fhase | Dea =]] Interface: [GrBET 7]

Time Span | 20m Action: VAT evarnt i
Mum Paints | 256 Event: SRQ ~

—| dmmihp34401a @ 722 an senrl) = —[Interface Op's: GRIBT on sez @7 | -

READ TEXT x REALG4 ARRAY:10 SEMD MTA
= Double-Click to Add Transactlnn = K = Double-Click to Add Transaction =

—| Spoll: dmmihp344071a @ 722 on senr?) | F |
Instrurnent: [dmmihp34401a) (@ 722) 7]
Ewent: Spoll
status 0
Action: MO VAT |
Mask: | #HO

Figure 5-5. Examples of Devices Configured on Remote Machines

LAN Hardware Configuration. The SICL LAN gateway support depends
on the configuration of the machine on which VEE is running, the machine
on which the gateway daemon is running, and the overall configuration of
the LAN. Consult with your system administrator to configure the LAN and
ensure that names and | P addresses are resolvable.

For the machine running the gateway daemon it is assumed that the daemon
install procedures will configure the local networking files correctly. If you
are using the HP E2050A LAN/GPIB Gateway, it is self-contained and all
internal configuration is done.

For networks using the HP-UX operating system, the client machine does
not need any specia network configuration files. However, the following
line must be in the SICL configuration file hwconfig. cf.

Chapter 5 195

#

Advanced /O Topics
I/O Configuration Techniques

LAN Configuration
<lu> <symname> ilan <not used> <not used> <sicl infinity>
<lan timeout delta> 30 lan ilan 0 0 120 25

This entry contains the normal logical unit/symbolic name keysfor SICL.
Theinterfacetypeisilan. Thesicl infinity and

lan_timeout delta entriesare special timeoutsand will be discussed in
the next section.

For the server machines, entries need to be made in twofiles, /etc/rpc and
/etc/inetd.conf.

To /etc/rpc add the following line:
siclland 395180

To /etc/inetd. conf add the following line.

rpc stream tcp nowait root /opt/sicl/bin/siclland 395180 1 siclland -e -1
/tmp/siclland.log

Execution Behavior

On the server machine, the inet daemon must be made to reread the
inetd.conf file by executing the following command with sys-admin
(root) privileges:

/etc/inetd -c

If the LAN resource discovery is not managed by the local files but by
Network Information Services (NIS, see Yellow Pages), the same files must
be modified on the database machine and the database recompiled.

Idedlly, 1/0 operations through the gateway work asif the interfaces and
devices are attached directly to the client computer. However, response
times can vary, depending on the LAN configuration, including the number
of connected hosts, LAN-to-LAN gateways, and current load. Sometimes, a
connection is terminated by disconnected cables or computer failures on the
LAN. These events must be accommodated when configuring timeout
periods.

When the server receives an 1/0 request from the client application, VEE,
the server uses the timeout value that you enter in the Instrument
properties dialog box. Thisis caled the SICL timeout. If the server's
operation is not completed in the specified time, the server sends areply to

196 Chapter5

Advanced 1/O Topics
I/O Configuration Techniques

the client indicating that a timeout occurred and the normal V EE timeout
error Occurs.

When the client sends an /O request to the server, the client starts atimer
and waits for the reply from the server. If the server does not reply intime, a
timeout occurs and an VEE timeout error is produced. Thisis called the
LAN timeout.

The client timeout differs from the server timeout because the I/0
transaction timefor the server isusually different from the transmission time
over the LAN. The server may complete an I/O transaction within five
seconds (the VEE default timeout period), but the actual transmission over
the LAN back to the client may take longer than five seconds.

The two timeouts are separate values that are adjusted using two entriesin
the SICL configuration file:

sicl infinity Used by the server if the user-defined timeout
(the SICL timeout), entered in the Advanced
Instrument Properties dialogbox,is
infinity (0). The server does not alow aninfinite
timeout period. The value specifies the number
of seconds to wait for a transaction to complete
within the server.

lan_timeout delta Valueadded to the server’stimeout valueto
determine the client’s timeout period (LAN
timeout). The calculated LAN timeout only
increases as hecessary to meet the needs of the
I/0 devices, and never decreases. Thisavoidsthe
overhead of readjusting the LAN timeout every
time the SICL timeout changes.

Chapter 5 197

Advanced /O Topics
I/O Configuration Techniques

Protecting Critical Sections

In amulti-process test system, sharing a resource among the processes
requires alocking mechanism to protect critical sections. A critical sectionis
needed when one of the processes needs exclusive access to a shared
instrument resource.

To prevent another process from accessing the instrument during the critical
section, the first process locks the instrument. The lock remainsin effect for
the time necessary to complete its task. During this time, the second process
cannot execute any interaction with the instrument, including an attempt to
lock the instrument for its own use.

The following EXECUTE transactions let you protect critical sections and
canbeusedinthepirect I/0,MultiInstrument Direct I/O,and
Interface Operations transaction objects. The transaction syntax
varies depending on the interface and transaction object being used. For
GPIB, Seria, and GPIO, the entireinterface is locked. For VX1, individual
devices are locked.

Tolock VX1 devicesviadirect backplane accessinthebirect 1/0 object,
use the transactions:

EXECUTE LOCK DEVICE
EXECUTE UNLOCK DEVICE

IntheMultiInstrument Direct I/O oObject, usethe transactions:

EXECUTE vxiScope LOCK DEVICE
EXECUTE vxiScope UNLOCK DEVICE

where vxiscope isthe configured name of aV X| oscilloscope such as the
HP E1428B.

Tolock GPIB, Serial, and GPIO Interfacesinthe Interface Operations
object, use the transactions:

EXECUTE LOCK INTERFACE
EXECUTE UNLOCK INTERFACE

198 Chapter5

Supported Platforms

Execution Behavior

Advanced 1/O Topics
I/O Configuration Techniques

Table 5-1. EXECUTE LOCK/UNLOCK Support

Platform Supported I/O Interfaces

Windows 95 GPIB?
(PC, HP 6232, HP 6233, or EPC7/8) | serial

VXI (PC with VXLink, or embedded)?

Windows NT GPIB2
(PC, HP 6232, HP 6233, or EPC7/8) | gerial

VXI (PC with VXLink, or embedded)?

HP-UX GPIB
(HP 9000 Series 700 or V/743) Serial
GPIO

VXI (S700 with MXI, VXLink, or embedded)®

a The Nationa Instruments GPIB interface does not support LOCK.

b. Register and memory access of VX devices (READ/WRITE REGISTER/
MEMORY transactions) are not |ockable. Only the very first execution of
atransaction that attempts a direct memory access could be locked out if
the memory is mapped into the VEE process space) by a prior lock in
another process. After that, there is no way to prevent multiple processes
from simultaneously accessing a memory location since thisis shared
memory.

When aversion of the EXECUTE LOCK transaction executes, it tries to
acquire alock on the device or interface. If thereis no pre-existing lock
owned by another process, the transaction executes completely and the lock
acquisition succeeds. If aprior lock exists, the transaction blocks for the
current timeout configured for that device or interface.

If the other process gives up the lock within the timeout period, the
transaction completes and acquires the lock. If the timeout period lapses, an
error occurs and an error message box appears. Thiserror can be captured by
an error pin on the transaction object.

After the lock isacquired, all subsequent 1/0O from direct 1/0,
MultiInstrument Direct I/O,Panel Driver, Component Driver,
and Interface Operations Objectsare protected from any other process
attempting to communicate to that device or interface.

Chapter 5 199

Advanced /O Topics
I/O Configuration Techniques

After the critical section has passed, the corresponding version of the
EXECUTE UNLOCK transaction can be executed.

Locks only protect critical sections across process boundaries. A single
process can create nested locks by performing two EXECUTE LOCK
transactions in sequence. Both transactions will succeed as long as there are
no prior locks by another process.

The process must then perform two EXECUTE UNLOCK transactions.

If only one EXECUTE UNLOCK transaction is executed the device or
interface remains locked. If atransaction attempts an unlock without a prior
lock, a run-time error occurs.

Locksonly exist whilethe VEE program is executing. When aV EE program
finishes executing, all locks are removed from devices and interfaces. This
protects the user from leaving devices or interfaces locked if the program
stops executing due to normal completion, run-time errors, or a pressed
Stop button, and no EXECUTE UNLOCK transaction has executed.

200 Chapter5

Advanced 1/O Topics
I/O Configuration Techniques

Example: EXECUTE The example program in Figure 5-6 shows EXECUTE LOCK/UNLOCK

LOCK/UNLOCK INTERFACE transactionsin an Interface Operations Object

Transactions - GPIB configured for GPIB. (This exampleisidentical for a serial interface.) The
lock and unlock transactions frame the UserObjects performing /O to the
devices on the GPIB interface at logical unit 7. This program will attempt to
acquire the lock three times. If the lock cannot be acquired after three
attempts, a user-defined error occurs.

—|Far Gount| « = Raise Error <]
If I Code 1
Message Unahle to acquire lock on GPIB
= Interface Op's: GPIBT @7 =

EXECUTE LOCK INTERFACE -I

= Double-Click to Add Transaction =

— Mext
Perform /0 to devices on GPIB Interface 7

Perform more 10 to devices an GPIB Interface 7

= Interface Op's: GFIBT @ 7 =
EXECUTE UNLOCK INTERFACE

= Double-Click to Add Transaction =

Elre-akl

Figure 5-6. EXECUTE LOCK/UNLOCK Transactions - GPIB

For each attempt, the EXECUTE LOCK INTERFACE transaction tries to
acquire the lock in the time allowed by the configured timeout period. You
can set thetimeout period inthe Properties dialog box of the Interface
Operation object. The error pin attached to the Next object in the first
transaction object will cause the thread to be re-executed in another attempt.
The break object after the last transaction object ensures that the thread does
not get executed unnecessarily a second time.

Chapter 5 201

Example: EXECUTE
LOCK/UNLOCK
Transactions - VXI

Advanced /O Topics
I/O Configuration Techniques

The example program in Figure 5-7 showsthe EXECUTE LOCK/UNLOCK
DEVICE transactionsin aMultiInstrument Direct I/O object. You
could usethepirect 1/0 objectinstead of theMultiInstrument
Direct I/0, butthat would mean using an object for each device instead
of one object for the group of devices. Thisisvery similar to the programin
Figure5-6. A For Count object drives athread which triesto acquire locks
on three different devices. After the I/O activity isdonein the user objects, a
series of unlocks are executed.

—[For Count] « l
. - Raise Errar =

Code 1
Messade |Unahle to acquire locks

—| Multilnstrument Direct /O =

EXECUTE "mirrors" LOCK DEVICE
EXECUTE "dmm" LOCK DEVICE

= Double-Click to Add Transaction =

I - Multilnstrument Direct /0 =

EXECUTE "mirrors" LOCK DEVICE
Ferform 1i0 to the three WX devices. EXECUTE "dmm" LOCK DEVICE Error |{

EXECUTE “funcgen” LOCK DEVICE

I = Double-Click to Add Transaction =

Ferform maore i to the three Vx| devices. I
Nextl
- Multilnstrument Direct /0 =

EXECUTE "mirrars" UMLOCK DEVICE
EXECUTE "dmm" UNLOCK DEVICE
EXECUTE "funcgen” UNLOCK DEYICH

= Double-Click to Add Transaction =

Figure 5-7. EXECUTE LOCK/UNLOCK Transactions - VXI

Each transaction tries to acquire its respective lock for the timeout period
configured for each device. If any of the three transactions timeout, an error
occurs that is trapped by the error pin. If asuccessful lock isfollowed by an
attempt resulting in atimeout error, the error pin traps the error.

Before the program can re-execute the lock transactions, all acquired locks

must be unlocked. That iswhy theMultiInstrument Direct I/0 object
is attached to the error pin. It is very important that this object try to unlock
each device in the same order asthe first object acquired the locks.

202 Chapter5

Advanced 1/O Topics
I/O Configuration Techniques

Since an error occursif an unlock transaction is executed before the lock
transaction, an error pin is also added to the object with the unlock
transactions. If atransaction failsto acquire the lock in the first object,
the same unlock transaction fails in the following object.

Chapter 5 203

Advanced /O Topics
I/O Control Techniques

|/O Control Techniques

This section describes some additional techniques for instrument 1/0
control.

Polling

VEE supports all serial poll operations defined by |EEE 488.1. All GPIB
instruments and all VX message-based instruments support serial poll
operations. VX message-based devices are, by definition, IEEE 488.2
compliant. VXI register-based devices are |IEEE 488.2 compliant if an
I-SCPI driver isavailable. VEE does not support parallel poll operations.

You can obtain an instrument’s serial poll response in two ways.

Object Serial Poll Behavior

Instrument The Instrument Event object can poll the specified

Event instrument once and output a scalar integer, which is the
serial poll response using the No waIT option. The
Instrument Event Object can also wait for a specific bit
pattern within the serial poll response byte by using a user
supplied bit mask and the AaLL CLEAR and ANY SET
options.

Direct I/O Direct I/0 objects for GPIB instruments support a walT
SPOLL transaction. This transaction repeatedly polls an
instrument until the serial poll response byte matches a
specific bit pattern, using a user-supplied bit mask and the
ALL CLEAR Of ANY SET options. See Chapter 4, “Using
Transaction 1/0O” for additional information about Direct
I/0.

The Instrument Event object has special execution properties when
configured for spol1 that are discussed in the next section, " Service
Requests’. This behavior alows other concurrent threads to continue
execution while waiting for a specific bit pattern using the mask value and
the ALL CLEAR OF ANY SET options.

204 Chapter5

Advanced 1/O Topics
I/O Control Techniques

NO WAIT will execute immediately and return the status byte of the GPIB or
message-based V X| instrument. Both objects have a Timeout control input
available from their object menus (Add Terminal) SO Yyou can
programmatically set atimeout period. Figure 5-8 shows an example.

~| Spoll. HPE1411B (@ 16024) =]
Device: | HPE14118 { @ 16024) =l
Event | Spoll =]
Action: RO AT |
kel I #H0O

Figure 5-8. Instrument Event Configured for Serial Polling

Service Requests

To detect a service request (SRQ message) for a VX1 instrument, use the
Instrument Event Object (I/0 = Advanced I/0 = Instrument
Event). To detect a service regquest for a GPIB instrument or RS-232, use
the Interface Event object (I/0 = Advanced I/0 = Interface
Event).

The Instrument Event and Interface Event Objects provide special
behavior for interrupt-like execution. To view this behavior, you may wish to
run your program with bebug = Show Execution Flow enabled.

For example, Interface Event behavesinaprogram asfollows:

1. Beforean interface Event object (configured for GPIB and with the
WAIT option specified) operates, execution proceeds normally with each
thread sharing execution with equal priority.

2. Whenan Interface Event Object operates, execution of the thread
attachedtothe Interface Event dataoutput pausesatthe Interface
Event object. Other threads not attached to Interface Event
continue to execute.

Chapter 5 205

Note

"zcope”™ and "dwm™ (below)
set up the instruments
and enable SRQs.

Advanced /O Topics
I/O Control Techniques

3. When an SRQ is detected on the specified interface, the data output of
Interface Event iSactivated. At thispoint, execution of all other
threads is blocked until the thread attached to the data output of
Interface Event completesexecution.

Example: Service Request. The program in Figure 5-9 shows one way to
handle service requests. In this example, it is possible that either dvm or
scope isresponsible for a service request. This program is saved in the file
manualilé .vee inthe examples directory.

The program in Figure 5-9 will run only if the specified instruments are
connected, configured, and powered up. However, you can use this program
as an example of programming techniques to usein your own programs or
you can modify the program to communicate with your own instruments.

The "Until Break™
loop waits for and
services the SRQs.

scope (@ (NOT LIVED

O

Until Break

dvrn (@ (NOT LIVE)R)

SRG: GPIBT

— IfThenfElse L
HP 3478 did it

Spoll: dvn (& (NOT LIVE))

— [fTheniElse

Sholl: scope [@ (NOT LIVE) Clear ESR(MOT LIVE)

Unknowen did it | HP 54504 did it

Figure 5-9. Handling Service Requests

The program determines the originator of the service request by using
Instrument Event to obtain the status byte of each instrument. Each

206 Chapter5

Advanced 1/O Topics
I/O Control Techniques

status byteistested using 1£/Then/Else and thebit (x,n) functionto
determineif bit 6 istrue. If bit 6 is set, the corresponding instrument is
responsible for the service request.

Theuntil Break object automatically re-enables the entire thread to
handle any subsequent service requests. The Instrument Event objectis
configured for NO WAIT, meaning the status byte is returned without using
the mask value. If amask value of 64 isused and the Tnstrument Event
object isconfigured for ANY SET, the If/Then/Else andbit (x,n)
function need not be used.

Different instruments have different requirements for clearing and re-
enabling service requests. In Figure 5-9, dvm requires only a seria poll to
clear and re-enable its SRQ capability. However, scope requires the
additional step of clearing the originating event register.

The Instrument Event object can be used to detect a service request
from amessage-based V XI instrument. The instrument that writes a request
true event (RT), which is evaluated as a request for service, into the VXI
controller's signal register receives a Read STB word seria protocol
command.

The message-based instrument sends its status byte back to the controller,
and writes arequest false event (RF) into the V XI controller’s signal register.
The status byte is used with the supplied mask value and the aNY SET or
ALL CLEAR options to determine which bit (besides bit 6) is set. Thus one
object, the Instrument Event, can be used to detect a service request
from amessage-based V X| device and determine why the request occurred.

Both objects have a Timeout control input available from their object
menus (Add Terminal) SO you can programmatically set atimeout period.
For further information, seethe Instrument Event and Interface
Event reference sections in the VEE Online Help.

Chapter 5 207

Advanced /O Topics
I/O Control Techniques

Monitoring Bus Activity

You can usetheBus I/0 Monitor object (I/0 = Bus I/0 Monitor)to
record all bus messages transmitted between VEE and any talkers and
listeners. Bus I/0 Monitor records only those bus messages inbound or
outbound from VEE.

You can monitor any supported interface (GPIB, V XI, serial, or GPIO) using
aBus I/0 Monitor. Eachinstanceof aBus 1/0 Monitor object
monitors just one hardware interface.

Figure 5-10 shows the bus messages sent to write *RST to an instrument at
GPIB address 717.

~| Bus IO Monitar { GFIBT @7) [a

»» Mon 06/Mar/2000 15:25:59

0oood * OxS55 u | MTa
ooool * Ox3E z ! UNL
ooooz * O3l 1 ! LISTEN 17
00003 > OxZ2a w
00004 = Ox52 R
oooos > Ox53 3
Scope gooos = 0Ox54 T
00007 > 0Ox0a <LF>

Figure 5-10. The Bus I/O Monitor
The display area of Bus I/0 Monitor containsfive columns:
B Column 1 - Line number
Column 2 - Bus command (*), or outbound data (>), or inbound data (<)
Column 3 - Hexadecimal value of the byte transmitted
Column 4 - 7-bit ASCII character corresponding to the byte transmitted

Column 5 - Bus command mnemonic (bus commands only, blank for
data)

TheBus I/0 Monitor executes much faster asan icon than as an open
view object.

208 Chapter5

Advanced 1/O Topics
I/O Control Techniques

L ow-L evel Bus Control

You can send low-level bus messages in two ways, as Figure 5-11 shows.

Object Bus Message Capability

Interface This object allows you to send arbitrary bus messages to
Operations any GPIB device, or reset the VXI interface and fire
various VXI backplane trigger lines.

Direct I/O Direct I/0 objects for GPIB, message-based VXI
instruments, and I-SCPI supported register-based VXI
instruments lets you send CLEAR, LOCAL, REMOTE, and
TRIGGER commands using EXECUTE transactions.

For further information regarding Interface Operations and
Direct I/0,seeChapter4,“Using Transaction1/O”.

— Interface Op's: GPIBT @7 = - scope thp54504a @ 717) =
EXECUTE CLEAR EXECUTE CLEAR
SEND MTA WRITE TEXT "“RST" EOL
SEMD UNL EXECUTE LOCAL
SEMD LISTEM 17 = Douhle-Click to Add Transaction =

SEND DATA™RST
EXECUTE LOCAL

= Double-Click to Add Transaction =

Figure 5-11. Two Methods of Low-Level GPIB Control

Chapter 5 209

Note

Advanced /O Topics
I/O Control Techniques

| nstrument Downloading

Some instruments allow you to download macros, measurement routines,
or complete measurement programs. For example, some HP instruments
support HP Instrument BASIC in which you can write complete HP
Instrument BASIC programs that execute inside the instrument. One
approach for using VEE to download a measurement routine to an
instrument is the following:

1. Create and maintain your measurement routine using atext editor, such
asvi. Savethe measurement routinein an ordinary text file.

2. UseFrom File toread thefile.
3. UseDirect 1I/0 towritethe contents of the fileto the instrument.

This section presents a complete example of downloading using this
approach. See Chapter 4, “Using Transaction |/O” for further information
regarding Direct I/0.

Figure 5-12 shows a program that downl oads a measurement subprogram to
the HP 3852A. This example downloads subprogram BEEP2 that beeps
twice and displaysamessage. This program is saved in thefile
manuall?7.vee inthe examples directory.

The program in Figure 5-12 will run only if the specified instruments are
connected, configured and powered up. However, you can use this program
as an example of programming techniques to usein your own programs or
you can modify the program to communicate with your own instruments.
This program, manual17.vee, has embedded configuration.

210 Chapter5

Advanced 1/O Topics
I/O Control Techniques

Below are the contents of the downloaded file manual1l7.dat. The
manuall?7.dat fileisprovided in the examples directory.

DISP MSG "LOADING BEEP2"
WAIT 1

SUB BEEP2

DISP "BEEP2 CALLED"
BEEP

WAIT .5

BEEP

SUBEND

DISP MSG "BEEP2 LOADED"

Start

HF 3852A (@ (NOT LIVE)) | | |

3

WRITE TEXT SCRATCH STR EOL

Thread #1

This thread erases the HP 38524's

subroutine memory and dowmloads the
Lintil Break specified subroutine.

From File =

Fram File:

—| HP 3852A { @ (NOT LIVE)) | " |
~installDirfexamplesimanualimanuall 7.dat |

ki STR MA}{FW a0

Start

HF 3852A (@ (NOT LIVE)) | | |

= Thread #2

WRITE TEXT' CALL EIEEP2 STR EOL

This thread calls the subroutine.

Figure 5-12. Example: Downloading to an Instrument

Chapter 5 211

Note

Advanced /O Topics
Logical Units and 1/0O Addressing

Logical Unitsand 1/O Addressing

To access an /O device, you will need to determine the correct address and
enter itinthe address fieldinthe Instrument Properties dialog box,
using the Instrument Manager asdescribed in Chapter 3, “Configuring

Instruments’.

This section covers the VEE 1/0 addressing scheme, including interface
logical units and instrument addresses, that supportsDirect I/0, Panel
Driver, and Component Driver |/O operations. Thisaddressing scheme
isnot used for VXlplug&play I/O operations. See “ Configuring for a
VXIplug& play Driver” on page 79 for information about V XIplug& play
addressing in VEE.

VEE supports the GPIB, RS-232 serial, and GPIO interfaces. Also, you can
access VX1 devices by using an HP E1406 Command M odule connected to
one of the supported GPIB interfaces.

VEE also supports direct VXI backplane access for embedded VX1
controllers, for the E1383A and E1483A VXLink interfacesfor PCs, and
for the HP E1489C EISA/ISA-to-M Xlbus interface with HP 9000 Series
700 computers.

The VEE addressing scheme uses logical units that you can set up using the
I1/0 Config utility program as part of installing and configuring the 1/0
libraries included with VEE. See Installing the Agilent 1/O Libraries (VEE
for Windows) or Installing the Agilent 1/O Libraries (VEE for HP-UX) for
information about installing and configuring the HP 1/O libraries, and setting
up logical unitsusing 1/0 Config. Itisrecommended that you set logical
units for interfaces according to Table 5-2.

Recommended /O Logical Unitsfor VEE

The following interface logical units are recommended for use with VEE.
See Installing the Agilent 1/0O Libraries (VEE for Windows) or Installing the
Agilent I/O Libraries (VEE for HP-UX) for information about installing and

212 Chapter5

Advanced 1/O Topics
Logical Units and I/O Addressing

configuring the I/O libraries and setting up logical units for interfaces using

the1/0 Config utility program.

Table 5-2. Recommended I/O Logical Units

Logical Unit PC (Windows 95, NT) Series 700 (HP-UX)
1 GPIB (82340 or 82341) GPIB (E2070 or E2071)
2 GPIB (82340 or 82341) GPIB (E2070 or E2071)
3 GPIB (82340 or 82341) GPIB (E2070 or E2071)
4 GPIB (82340 or 82341) GPIB (E2070 or E2071)
5 GPIB (82340 or 82341) GPIB (E2070 or E2071)
6 GPIB (82340 or 82341) GPIB (E2070 or E2071)
7 GPIB (82340 or 82341) GPIB (E2070 or E2071)
8 GPIB (82340 or 82341) GPIB (E2070 or E2071)
9 COM1 serial port COM1 serial port
10 COM2 serial port COM2 serial port
11 COMS3 serial port COMS3 serial port
12 COM4 serial port COM4 serial port
13 GPIO (HP E2075) GPIO (HP E2075)
14 GPIBO (National GPIB card) Unused
15 GPIB1 (National GPIB card) Unused
16 VXI (Embedded, or PC using VXI (Embedded, or S700 using
VXLink) EISA/ISA-to-MXIbus)
17 GPIB2 (National GPIB card) Unused
18 GPIB3 (National GPIB card0 Unused

Chapter 5

213

Note

To Address Serial
Ports

To Address GPIO
Devices

Advanced /O Topics
Logical Units and 1/0O Addressing

Logical unit 7 isthe recommended default for the first GPIB card. Each card
must have a unique logical unit.

The 82335 GPIB card is aso supported for Windows 95/98 on the PC

(not for Windows NT). However, only logical units 3 through 7 are
recommended for the 82335 GPIB card and the logical unit is set by the on-
card switch settings (the default setting is 7). In addition, you must exclude
address space for the 82335 as described in “Excluding Address Space for
the 82335 Card (Windows 95/98 Only)” on page 218.

Only logical units 14, 15, 17, and 18 are supported for National GPIB cards
on the PC. These GPIB cards are not supported for HP 9000 Series 700
computers.

/O Addressing

Addressing schemes for various types of devices are described in the
following sections.

Serial ports are supported by using the logical units that you assign to them
using 1/0 config. Normally, the COM1 serial port is assigned logical unit
9 (see Table 5-2). In this case, use 9 asthe address of the device connected to
COM1.

GPIO devices are supported by using the logical unit that you assign to the
GPIO interface using 1/0 config. Normally, thelogical unit 13 is used
for GPIO. In this case, use 13 as the address for the GPIO device.

214 Chapter5

Advanced 1/O Topics
Logical Units and I/O Addressing

To Address GPIB GPIB devices are addressed using the following scheme:
Interfaces and

Devices SPA[SA]
Where:
S is the logical unit of the GPIB interface.
pPA is the primary address of a GPIB device (the valid range is
00 through 30).
SA is the optional secondary address (the valid range is 00

through 31).

Two examples are:

B For aGPIB device at logical unit 7, primary address 01, enter 701 in the
Address field of the Instrument Properties dialog box.

B For aGPIB device at logical unit 14, primary address 09, secondary
address 02, enter 140902 inthe address field of the Inst rument
Properties dialog box.

GPIB Logical Units. GPIB interfaces are supported by using the logical
unitsthat you assign to themusing 1/0 Config. The recommended logical
units for GPIB interfaces are aslisted in Table 5-2. If the recommended
logical units (1 through 8) are configured by the I/O libraries for GPIB
interfaces, V EE can theoretically access up to eight GPIB cards, which can
be a mix of the supported cards:

B For an E2070 or HP E2071 (for Series 700 computers), the logical unitis
assigned by the software. The logical units are assigned in the order: 7, 8,
1,2, 3,4,5, and 6. However, each card must be set to a unique base
address. (See the owner’s manual for information on setting the base
address.)

B For an 82340 or 82341 (for PCs), the logical unit is assigned by the
software. Thelogical unitsareassignedintheorder: 7, 8, 1, 2, 3, 4, 5, and
6. However, each card must be set to a unique base address. (See the
owner's manual for information on setting the base address.)

Chapter 5 215

To Address VXI
Devices on the
GPIB

Advanced /O Topics
Logical Units and 1/0O Addressing

B For an 82335 (for PCs, Windows 95/98 only), the logical unit is
determined by switch settings on the card (the default is 7). If you install
more than one 82335 card, each card must be set for aunique logical unit
in the range 3 through 7. (See the owner’'s manual for instructions.) Also,
you must exclude address space for each card. See “ Excluding Address
Space for the 82335 Card (Windows 95/98 Only)” on page 218.

GPIB Logical Units (PCsOnly). The National Instruments GPIB driver
configures up to four GPIB cards with the designations GPIBO, GPIB1,
GPIB2, and GPIB3. To access these GPIB cards, you must assign the logical
units 14, 15, 17, and 18 to the GPIB cards (see Table 5-2) using /0
Config. VEE does not support any other logical units for GPIB cards.
Otherwise, the addressing is the same as for any other GPIB card.

To access V XI devices through the GPIB with an HP-1B command module,
you can use secondary addresses. If you are using an HP E1406 Command
Modulein aVXI card cage, the primary address is set by a switch on the
command module (default = 09) and the secondary addressis the individual
V XI device'slogical address divided by eight.

For example, suppose you have an HP E1406A Command Module (address
=09) in a C-Size Mainframe, with the HP E1406A connected to the GPIB
interface at logical unit 7. For an HP E1326B Multimeter in aVXI slot with
itslogical address set to 24, the multimeter addressis 70903.

Two instrument drivers are provided to help you find the correct addresses
for VX1 devices connected by means of a GPIB command module:

B Usethehpe140x.cid driver to locate VX devices connected by means
of an HP E1405 or HP E1406 GPIB Command Modulein aC-size VXI
mainframe.

B Usethehpel300a.cid driver to locate VX1 devices connected by
means of an HP E1306 GPIB Command Modulein aB-size VXI
mainframe. (This driver also supports the HP E1300 and HP E1301
B-Size VXI Mainframes, which include built-in command modules.)

216 Chapter5

Advanced 1/O Topics
Logical Units and I/O Addressing

To use either of these drivers, add an instrument pand for the driver using
the Instrument Manager asdescribed in Chapter 3, “ Configuring
Instruments’.

Note Do not enter a sub address value for VX1 devices, except for modulesin a
VX1 switch box. See the next section for details.

To Set Address/Sub Most GPIB and VXI instruments do not use sub addresses. Do not enter a

Address Values sub address value unless you are accessing a VX| switch box or one of the
mainframe instruments that use sub addresses, such as the HP 3235A
Switch/Test Unit or the HP 3488A Switch/Control Unit.

Note Sub address values are used only if you are using an HP Instrument Driver
for a device that supports sub addresses. Do not use sub address values if
you are using Direct |/O.

Two examples follow:

B To access amodule in an HP 3235A Switch/Test Unit, enter the GPIB
address (for example, 701) of the HP 3235A itself in the Address field
of the Instrument Properties dialog box, using the Instrument
Manager as described in Chapter 3, “Configuring Instruments”.

Enter the sub address of the individual modulein the sub Address field
of theadvanced Instrument Properties dialogbox (onthepanel
Driver tab). For information on entriesin the sub Address field, see
online help for the HP 3235A instrument driver (Help =
Instruments).

B To accessamodulein aV Xl switch box, enter the GPIB address of the
switch box (for example, 70902) inthe address field and the sub
address of the individual module in the sub aAddress field. For
information on entriesin the sub address field, see online help for
the VX1 switch box instrument driver.

Chapter 5 217

To Address the VXI
Backplane Directly

Note

Advanced /O Topics
Logical Units and 1/0O Addressing

VEE can address the V X| backplane directly for the following systems:
B An HP 623x VXI Pentium Controller.

B An EPC-7 or EPC-8 VXI Controller, provided the EPConnect softwareis
installed.

B A PC connected to aV XI card cage using an HP E1383A or HP E1483A
VXLink (ISA-to-VXI) interface, provided the EPConnect softwareis
installed.

B AnHP V743 VXl Embedded Controller.

B An HP 9000 Series 700 computer connected to a V X1 mainframe using
an HP E1489C EISA/ISA-to-M XIbus interface.

Assuming recommended logical units have been set using 1/0 Config
(see Table 5-2), VEE accesses the V X| backplane vialogical unit 16. The
address for aV X1 deviceisthelogical unit (16) with the logical address of
the V XI device appended.

For example, suppose an HP EPC-7 VX1 Controller and an HP 1411B
Digital Multimeter are installed in aVX| mainframe. If the logical address
of the HP 1411B is set to 24, the VXI| addressis 16024. You do not divide
the logica address by 8 as you would if you were accessing the VX1 device
via GPIB.

Excluding Address Space for the 82335 Card (Windows
95/98 Only)

For an 82335 card, which uses memory-mapped 1/0 addressing, you must
exclude the address space required by the GPIB interface so memory
manager programs will not try to use that space.

The 82340 and 82341 cards and the National Instruments GPIB cards do not
use memory-mapped 1/O addressing, so this section does not apply to those
cards. Also, this section does not apply to the built-in GPIB interface for an
embedded controller.

218 Chapter5

Advanced 1/O Topics
Logical Units and I/O Addressing

The 82335 card is supported for Windows 95/98 only, not for Windows NT.

To exclude address space:

1

Install the 82335 card. The card is pre-set at the factory for logical unit 7.
Normally, you should use logical unit 7. However, if there is more than
one 82335 card, each card must be set for adifferent logical unit in the
range 3 through 7.

Add the appropriate line for your logica unit to the [386Enh] section of
your SY STEM.INI file (in the C:\Windows directory):

For Logical Unit: Add to SYSTEM.INI:

3 EMMEXCLUDE=0CC00-O0CFFF
4 EMMEXCLUDE=0D000-0D3FF
5 EMMEXCLUDE=0D400-0D7FF
6 EMMEXCLUDE=0D800 - 0DBFF
7 (default) EMMEXCLUDE=0DCO00-0DFFF

If there isamemory manager DEVICE line (for example,
DEVICE=EMM386 .EXE) in the CONFIGSY Sfile (in the root directory),
you will need to modify the file. Add a parameter to exclude the address
space (for example, x=pcoo-DFFF for logica unit 7), as shown in the
following table:

For Logical Unit: Modify in CONFIG.SYS:

3 DEVICE=EMM386 .EXE X=CCO0-CFFF
4 DEVICE=EMM386 .EXE X=D000-D3FF
5 DEVICE=EMM386.EXE X=D400-D7FF
6 DEVICE=EMM386 .EXE X=D800-DBFF
7 (default) DEVICE=EMM386 .EXE X=DCOO-DFFF

Chapter 5 219

Advanced /O Topics
Logical Units and 1/0O Addressing

Note If multiple 82335 cards are installed, you must exclude address space
for each card. For example, for two cardsinstalled (logical units 3 and 7),
add the following linesto the [386Enh] section of SYSTEM.INI:

EMMEXCLUDE=0CC00-0CFFF
EMMEXCLUDE=0DCO0-0DFFF

Also, if your CONFIG.SY Sfile contains the DEVICE line for
EMM386.EXE, add parameters to it as shown:

DEVICE=EMM386 .EXE X=CCO0O0-CFFF X=DCOO-DFFF

4. Reboot your computer (select Start = Shut Down) and restart
Windows.

220 Chapter5

Using Panel Driver and Component
Driver Objects

Using Panel Driver and Component Driver
Objects

This chapter describes how to use Panel Driver and Component
Driver objectswith VEE.

222 Chapter 6

Panel Driver Files

Components

Using Panel Driver and Component Driver Objects
Understanding Panel Driver and Component Driver Objects

Under standing Panel Driver and
Component Driver Objects

This section explains some background and details that will help you use
Panel Driver and Component Driver objects more effectively.

Inside Panel Drivers

The VEE Panel Driver and Component Driver objectsboth require
that the appropriate Panel Driver ("ID") be present, and that

the instrument be configured to that driver. These instrument drivers are
sometimes called "VEE drivers' or "Instrument Drivers'. The

Panel Driver file (the. cid file) must be present and configured to use
Panel Driver and Component Driver objects. However, thesefilesare
not used for birect 1/0 or VXlplug&play operations.

Each Panel Driver describes the unigue personality of a particular test
instrument. A driver fileisrequired to control any instrument using a
Panel Driver Of Component Driver object.

Panel Driver files (. cid files) are optionaly copied onto your system disk
when VEE isinstalled. Each driver file contains two basic types of
information:

B A description of theinstrument’s functions and the commands used to set
and query them.

B A description of the appearance and behavior of the graphical control
panel visible in the open view of a Panel Driver object.

Internally, Panel Driver and Component Driver objectsrepresent each
instrument function as a component. Component names are anal ogous to
variable names in programming languages; components are used to hold the
value of instrument function settings or measured values.

Figure 6-1 shows some of the componentsin the HP 3478A voltmeter.

Chapter 6 223

Using Panel Driver and Component Driver Objects
Understanding Panel Driver and Component Driver Objects

Component Name Instrument Function

ARANGE Autoranging is on or off.

FUNCTION The measurement function is voltage, current, or
resistance.

TRIGGER The trigger source is internal, external, fast, or single.

READING The most recent measured value.

Access components interactively or through a program. To accessa
component interactively, click alabeled button or display in the open view
of aranel Driver. TO access components using agraphical program, add
them asinput or output terminals. Figure 6-1 shows an example. For detailed
procedures on using components, see “ Selected Techniques’ on page 229
and “Using Component Driver Objectsin aProgram” on page 230.

TIME_SENS

Main Panel

G

Trig Level

TIME_SENS

Figure 6-1. Accessing Driver Components

224

Chapter 6

States

Using Panel Driver and Component Driver Objects
Understanding Panel Driver and Component Driver Objects

Aninstrument stateis a specific set of values for all componentsin a
particular driver. You set all the components in avoltmeter driver to
particular values for AC voltage measurements. You use a different set of
component values to measure DC current. These are two states for the
voltmeter. Figure 6-2 shows two voltmeter states.

—| chvm = —| chvm =

Function ATV

Ndigits m Ndigits m
Trigeger Trigeger
Auto Zero Auto Zero

Figure 6-2. Two Voltmeter States

In VEE, each instance of a Panel Driver represents a separate measurement
state. (Panel Driver objects are often called "state drivers'.) It is common to
have more than one Panel Driver in a program, where each Panel Driver
programs the same physical instrument to a unique measurement state.

Each Panel Driver object you create using the same instrument Name
communicates with the same physical instrument.

How Panel Driver-Based |/O Works

When you place aPanel Driver OF Component Driver objectina
program, VEE establishes a state record in memory. This state record is
specific to aparticular instrument Name. Names are discussed in greater
detail in “ The Importance of Names’ on page 227.

All driver-based objects that reference a particular Name share asingle state
record. The state record reflects the current values of each of the
instrument's components. When you write to components using Panel
Driver Of Component Driver objects, VEE updates both the physical
instrument and the state record.

Chapter 6 225

Component Driver
Operation

Using Panel Driver and Component Driver Objects
Understanding Panel Driver and Component Driver Objects

If you write to the instrument using Direct 1/0,VEE marksthe state
record asinvalid because the state record no longer matches the true state of
the physica instrument. However, subsequent use of a Panel Driver Or
Component Driver object causes VEE to recal the instrument’s state,
which resynchronizes the physical instrument state and state record.

Important differences occur when the panel Driver and Component
Driver objects operate.

Panel Driver Operation

When apranel Driver operates, it sendsonly those commands necessary
to make the state of the physical instrument match the state defined in the
graphical control panel.

If necessary, apanel Driver Sendscommandsto reset and update all
settings in the corresponding physical instrument. This behavior is affected
by the Incremental Mode setting described in Chapter 3, “Configuring
Instruments”.

If you set Incremental Mode to ON, VEE compares the current state
record to the desired state defined in the Panel Driver and determines
which components must be changed. VEE sends only those commands
required to update the affected components.

If you set Incremental Mode to OFF, or if the current state record is
marked asinvalid, VEE explicitly sends commands to update each
component in order to guarantee synchronization between the desired state
and the state of the physical instrument.

A panel Driver operateswhen itssequenceinput pinisactivated or when
you click one of the control panel buttons visible in the open view.

When a Component Driver operates, it writes only to those components
that appear as input terminals and reads only from those components that
appear as output terminals. That iswhy Component Driver objects
generally operate faster than panel Driver objects. A Panel Driver
potentially writes to many components to achieve a particular state; a
Component Driver Writesto only the components specified.

226 Chapter 6

Multiple Driver
Objects

Using Panel Driver and Component Driver Objects
Understanding Panel Driver and Component Driver Objects

Components are read and written in the order they appear as terminals, from
top to bottom. This order of operation isimportant in cases where you want
the instrument to change the value of one component, based on the value of
another. Thisinteraction is called coupling. With component drivers you
must do this manually.

Some situations that can be confusing when using multiple objects that:
B Usethe sameinstrument Name.
B Usethe sameinstrument address.

B Usethe samedriver file.

The Importance of Names. The Name field in the Instrument
Properties dialog box logically maps each instrument object to the
address of aphysical instrument and the other configuration information. To
determine the Name of an instrument object, click Show Configinthe
object menu. The text in the object title is not necessarily the same as the
Name.

In general, only one configured Name should reference a particular physical
instrument. Multiple Name references to the same instrument address causes
unpredictable resultsin a program using Panel Driver objects. VEE's
internal records of instrument states are organized by Names. Two

panel Driver objectswith different nameswill blindly write to the same
address, invalidating each other’s state records.

In some casesinvolving Direct I/0,Yyou may need morethan one Name
for the same physical instrument. This may be necessary if certain settingsin
thepirect I/0tabof theadvanced Instrument Properties diaog
box need to be varied depending on the direct I/O operation.

For example, you may want to send some commands to an oscilloscope with
EOI asserted on the last character of data and some commands without EOI.
In this case, you can configure one instrument with the Name Scope EOT
and another instrument with the Name Scope. Both Scope and Scope EOT
have the same Address setting but different settingsfor END on EOL.

Chapter 6 227

Using Panel Driver and Component Driver Objects
Understanding Panel Driver and Component Driver Objects

The configured Name appears as the default title in instrument objects when
you select them from the menu. Editing the title in no way affects the
relationship to the Name.

Names are also important for saving and opening programs containing
instruments. When you save a program, the Name of each instrument object
in the program is saved. When you open a program, VEE looks in the
current 1/0 configuration for the Name of each instrument being loaded.

For example, if you saved aprogram containing anpirect I/0 objectwith
anameof My Scope, there must be an instrument named My Scope in the
current 1/0O configuration. If the object under consideration isapanel
Driver Of Component Driver,theID Filename (driver file) inthe
current 1/0 configuration must match the one used in the saved program.

NameS must match exactly, including spaces, except that Name is not case-
sensitive.

Reusing Driver Files. Itisvalid (and not uncommon) to have severa
objects with different names that use the same driver file. For example, you
might have atest system that uses three programmabl e power supplies
named Supplyl, Supply2, and Supply3 at three separate addresses that
al usethe hp665x.cid driver file. Since the Names are different, VEE
maintains a separate state record for each name; a panel Driver for
Supply1 Will have no effect on anything related to supply2 or Supply3.

228 Chapter 6

Note

Using Panel Driver and Component Driver Objects
Selected Techniques

Selected Techniques

This section describes some techniques for using panel Driver and
Component Driver objectsinteractively or in aprogram.

Using Panel Driver Objects|nteractively

The open view of aranel Driver object providesagraphical control
panel that you can use to interactively construct a measurement state. If you
connect the corresponding physical instrument to your computer and turn
Live Mode 0n, you can control the physical instrument interactively asyou
build the measurement state.

To change an individual setting, click the corresponding field in the
graphical control panel and complete the resulting dialog box. To make a
measurement and view the result, click the display region of anumeric or
XY display. XY displays may take a few seconds to update.

Using Panel Driver Objects Programmatically

Toadd aranel Driver oObject to your program:

1. Click 1/0 = Instrument Manager.... The Instrument Manager
dialog box appears.

2. Click the desired instrument to highlight it and then click the
Panel Driver button.

The panel Driver buttonisinactive ("grayed out") if theinstrument has
not been configured with a Panel Driver file. See Chapter 3, “Configuring
Instruments” for configuration procedures.

3. When the object outline appears, position the cursor and click once to
place the object in the work area.

Chapter 6 229

Note

Using Panel Driver and Component Driver Objects
Selected Techniques

Touse Ppanel Driver oObjectsinaprogram, you will often useinput or
output terminals to set the values of components. Each input or output
terminal actually corresponds to a component in the driver. There are two
ways to add aterminal:

B Sdect Add Terminal = Data Input Of Add Terminal =
Data Output fromthe panel Driver object menu. A list box appears
that lists all the valid driver components not yet used as terminals.
Double-click the component in the list that you wish to add as aterminal.

B Sdect Add Terminal by Component =
Select Input Component Of Add Terminal by Component =
Select Output Component fromthe panel Driver object menu.
After making this selection, click one of the fields or display areasin the
graphical control panel to add the corresponding component as a
terminal.

In general, it is more convenient to use the first method listed above because
you do not need to guess the name of the component you want to use.
However, some components are not visible on any part of the graphical
control panel. You must access these using the second method.

Using Component Driver Objectsin a Program

To add a Component Driver object to aprogram:

1. Click 1/0 = Instrument Manager.... A list of configured instruments
appears.

2. Click the desired instrument to highlight it and then click the
Component Driver button.

The Component Driver button will beinactive ("grayed out”) if the
instrument has not been configured with a Panel Driver file. See Chapter 3,
“Configuring Instruments’ for configuration procedures.

3. When the object outline appears, position the pointer and click once to
place the object in the work area.

230 Chapter 6

Using Panel Driver and Component Driver Objects
Selected Techniques

Component Driver objectsare generally used when you need to
repeatedly execute an instrument control object while changing only afew
components. Component Driver oObjects are preferred over

panel Driver objectsin these situations because Component Driver
objects write and read only the components you specify and execute
somewhat faster.

Figure 6-3 illustrates this type of situation. This program measures the
frequency response of afilter by sweeping the input frequency sourced by
fgen and measuring the response using dvm. Since the subthread attached
to For Log Range executes repeatedly, component drivers are used to
improve execution speed. Note that panel Driver objects are till
appropriate for theinitial set up of £gen and dvm.

— Fraguency Response =
=

= fgen [«] T
— FREQUENCY | | FREQUENCY | Freq
L
= dvm [=]
| READING | Filter 1
1)

___________________ —i| Auto Scale

Figure 6-3. Using Panel Drivers and Component Drivers

The program shown in Figure 6-3 is stored in thefilemanualis.vee inthe
examples directory.

Chapter 6 231

Using Panel Driver and Component Driver Objects
Selected Techniques

Getting Panel Driver Help

To obtain help about an Panel Driver, select Help from the object menu of a
Panel Driver Of Component Driver object. Then, open the appropriate
help topic from the resulting dial og box.

232 Chapter 6

Using VXIplug&play Drivers

Note

Using VXIplug&play Drivers

To use aVXlplug& play driver to communicate with an instrument, you must
install the appropriate V Xlplug& play driver files and the VISA 1/O library.
See “Introduction to V XIplug&play” on page 46 for VISA installation
information. You must also configure VEE for theinstrument as described in
“Configuring for aVXIplug&play Driver” on page 79.

The primary means of communicating with aV Xlplug&play driver in

VEE isthe To/From VXIplugs&play Object, described in the following
section. You can aso call VXIplug&play functions from VEE ca11 objects
(see“Using V XIplug& play Functions from Call Objects’ on page 250.) The
latter method is provided for backward compatibility with VEE Version 3.1.

Program Compatibility:

Previous versions of VEE have supported V XIplug&play drivers.
VEE Version 3.2 provided the To/From vXIplugsplay object. VEE 3.2
programs using this object are compatible with later versions of VEE.

VEE Version 3.1 provided only direct cal1l accessto VXIplug&play drivers.
If you used cal1l objectsto control VXlplug&play instrumentsin VEE
Version 3.1, your program will work in later versions of VEE after you make
certain changes to use the 32-bit version of the driver.

You must install the Windows 95/98 version of VISA and the 32-bit version
of the V Xlplug&play driver, and you may have to changethe Import objects
to use the new location of the V XIplug&play driver files. For more
information on using cal1l objectsto access V Xlplug&play drivers, see
“Using V XIplug& play Functions from Call Objects’ on page 250.

234 Chapter 7

Using VXlplug&play Drivers
Using the To/From VXIlplug&play Object

Using the To/From V XI plug& play Object

After you have added V X1plug& play instruments to the V EE instrument
configuration, you can use the V XIplug&play driversin your program.
Access the instruments by the functions contained in the drivers. The
To/From VXIplugsaplay Object provides accessto the V Xlplug&play
function panels.

To get the To/From VXIplugsaplay Object:
1. Sdect 1/0 = Instrument Manager. The Instrument Manager

appears and displays all currently configured V Xl1plug& play instruments
(aswéll as any other instruments that are configured).

2. Sdect theinstrument with which you want to communicate, and click the
Plugs&play Driver button. The outline of the object appears.

3. Placethe outline of the To/From VXIplug&play oObject whereyou

want it in the work area and click the mouse button. The object appears
as shown in Figure 7-1.

= TofFram HPE1 4138 =

= Diouhle-Click to Add Function =

Figure 7-1. To/From VXIlplug&play Object

Chapter 7 235

Using VXlplugé&play Drivers
Using the To/From VXIplug&play Object

Selecting a Function

Select the V XIplug& play functions from the To/From vXIplugsplay
object.

1. Double-click an empty transaction or select Add Trans Of Insert
Trans from the object menu. The Select a Function Panel dialog
box appears. It displays function panels grouped into logical categories,
such asMeasure Or Configure, asshownin Figure 7-2. Each driver
has different categories.

(1 HPE1410

-3 High Level Control

-1 Measure

-1 Configure Cument Settings
Ui Read using Current Settings
-1 Low Level Control

Initiate Measurement

Ahort Measurement

Fetch Diata from Instrument
Execute Immediate Trigger
-1 Configure

-] Calibration

[7 VPPN

|»

L

Places the multimeter in the wait-for-trigger state and transfers L
readings directly to the output buffer after receiving a trigger.
Because multimeter memory is not used to store the readings,

there is no restriction on the sample count and trigger count.

0K | Cancell

L 1

Figure 7-2. Select a Function Panel Dialog Box

Q Click the [+] iconsto view the hierarchical structure of function
panels.

U Click the [-1 iconsto hide the function panelsin the hierarchical
structure.

236 Chapter 7

Note

Using VXlplug&play Drivers
Using the To/From VXIplugé&play Object

U Click the [£ (x) 1 iconsto sdlect the function panel. You will seea
short description of the function panel in the lower part of the dialog
box.

To completely expand a branch of the tree, select the item to expand and
press the * key.

Generally, you will see only function panels that adhere to the
V Xlplug&play version 3.x specification and are allowed by VEE.

VEE automatically callsinit () at the appropriate time. However, there
may be other initialization functions, suchas init_all(), init next (),
orinit first () inthelist. These functions are not defined in the

V Xlplug& play specification and are not supported by VEE.

Do not select these functions. If you must use these functions, you need to
create your program differently and call the V XIplug& play driver from a
Call object as described in “Using VXIplugé& play Functions from Call
Objects’ on page 250.

There are no entriesfor PREFIX_init () or PREFIX close ().
These functions are performed automatically by VEE.

2. Click ok onthe select a Function Panel dialog box.

3. You see atabbed dialog box called Edit a Function Panel that
allows you to specify the parameters for the function panel.

Chapter 7 237

Using VXlplugé&play Drivers
Using the To/From VXIplug&play Object

Editing Function TheEdit a Function Panel dialog box alowsyou to set controls and
Panel Parameters variablesto pass to the selected V X|plug&play driver’s function. There are
two tabs, Panel and Configuration.

The Panel Tab. The panel tab, shown in Figure 7-3, alows you to specify
the constant (control) values to passto the function.

Edit Function Panel for hpe1410_measure_Qf)

Fanel | Configuration |

function reading
Frequency ,70 Q0E+000
Petiod :

4-Wire Resistance
2-Wire Resistance

AC Voltage
AC+DC Voltage
D Voltage
X Errar
wi
#H0

’07

hpeld10_measure_QdinstrHandle, hpel410_COMNF_YOLT_DC, reading

ok | mop | cancel | Help | mnstrHelp|

Figure 7-3. Panel Tab of Edit Function Panel Dialog Box

B Controls- The top part of this dialog box contains controls to specify
constant parameters. The names of the controls are label s specified from
the function panel file.

B vi - Displaysthe unique "virtual instrument" handle (also called the
"session handle") of the instrument. Depending on the driver version,
the name of thisfield may change, but the location is awaysin the lower-
left corner of the function panel.

238 Chapter 7

Using VXlplug&play Drivers
Using the To/From VXIplugé&play Object

B Error - Displaysanon-zero valueif an error occurred when executing
this function panel. Depending on the driver version, the name of this
field may change, but the location is always in the lower-right corner of
the function panel.

B Function call - At the bottom of the dialog box is the C function and the
parameters that are sent to the driver when the object executes. This
command string is also shown as a transaction on the open view of the
object.

Getting Help on a VX1 plug& play Function Panel. Inthe edit
Function Panel dialog box, click the right mouse button on the
background of the panel tab for help on the function panel. A dialog box
containing a description of the function appears.

Click the right mouse button on a control (not the label) for an explanation
of the parameter.

For complete help on the VXIplug&play driver, select Instrument Help
from the object menu of the To/From vxIplugs&play Object.

Chapter 7 239

Using VXlplugé&play Drivers
Using the To/From VXIplug&play Object

The Configuration Tab. The configuration tab, shown in Figure 7-4,
alows you to specify the variablesto pass to the function. Thisallowsyou to
set the parameter values programmatically.

Edit Function Panel for hpe1410_measure_Qf)

Panel |Configuration |

~function

Farameter Type: Int32 {nput Only)

Parameter Yalue: <% Constant < Variable

Mame: hpeld410_CONF_WOLT_DC I™ Create Input Terminal

~reading

Farameter Type: Realdd (Qutput Only)

Parameter Yalue: < Constant 4 Variable

Mame: |reading V Create Output Terminal
ok | mop | cancel | Help | mnstrHelp|

Figure 7-4. Parameter Tab of Edit Function Panel Dialog Box

Parameter values are shown in groups. The name of each group is the label
name of the parameter as specified in the V XIplug&play function panel. In
Figure 7-4, function and reading are labels. Each group may contain the
following information.

B parameter Type - Thisprovidesinformation about the parameter data
type and whether the parameter is Input Only, |nput/Output, or Output
Only.

B Parameter Value - When Constant is selected, this parameter is
passed as a constant value that is set on the panel tab. When variable
is selected, this parameter is passed as a variable. The value of the
parameter may be changed programmatically. Some fields are aways
variables, such as the output for a reading.

240 Chapter 7

Using VXlplug&play Drivers
Using the To/From VXIplugé&play Object

B Name - Whenthe parameter Type issettovariable, thisfieldis
editable. By default, the name of the variable is set to its label name (or a
similar nameto makeit avalid VEE variable name). You can change this
to any valid variable name in VEE. If the variable is an input variable,
you can also put an expression, function call, or global variablein this
edit field.

B Create Terminal - Whenthe Pparameter Type iSSettovariable,
thisfield is editable. When the check box is checked and Name does not
currently exist asaterminal name, pressing ok creates the terminal (with
the name specified in Name) as an input, output, or input/output terminal,
asindicated in the dialog box. To delete aterminal onceitis created, you
must use Delete Terminal from the object menu.

If the Name ischanged and Create Terminal ischecked, a new
terminal is added.

If the Name is set to an invalid terminal name, Create Terminal iS
grayed out.

B Auto-Allocate Input - This appears on Input/Output parameters that have
been set to Variable, not Constant. The next section provides more
information.

Press the NoP button to save the latest settings shown in this dialog box and
make thistransaction a"no operation”. Thisis the same as commenting out a
line of code in atext-based computer program.

Pressthe He1p button for help about the To/From vXIplugs&play object.
Press the ok button when you have finished editing.

Pressthe Instr Help button to get instrument-specific help written by the
driver developer.

Chapter 7 241

Using VXlplugé&play Drivers
Using the To/From VXIplug&play Object

The Auto-Allocate Feature (Passing Arrays and Strings). Some

V Xlplug& play functions want to return datain an array or Text string.

The V Xlplug& play specification requires that the application (VEE) allocate
the memory for the array or string since the V Xlplugé& play function cannot
pass back allocated memory. VEE must all ocate the memory, and the
function can write to that memory.

Theauto-Allocate featureletsyou easily tell VEE how much memory to
alocate. VEE alocates the correct data type and shape, in the size required.

If aparameter to afunction is avariable that requires an array or a Text
string, the Parameters tab displays an additional field: Auto-Allocate
input. For example, inthe dialog box in Figure 7-5 readings can input an
array. The parameters tab showsAuto-Allocate input Selected:

Edit Function Panel for hpe1410_read_QX)

Panel |Configuration |

readings
Farameter Type: Array of Real64, size unknown {InputOutputy

Parameter Yalue: < Constant 4 Variable

Mame: |readings V Create Output Terminal

[¥ Auto-Allocate input Size: [5000

ok | mop | cancel | Help | mnstrHelp|

Figure 7-5. Selecting the Auto-Allocate Input Feature

When auto-Allocate input isselected, the size field becomes active.
The default sizeis 5000, but you can enter any appropriate size to allocate
the input data. You must determine how large an array or string needsto be

242 Chapter 7

Note

Using VXlplug&play Drivers
Using the To/From VXIplugé&play Object

passed. An input terminal is not created for this parameter and VEE
automatically allocates the memory for the parameter.

For an array, size denotes the number of elementsin the array. For atext
string, size denotes the number of characters (bytes). See Instrument
Help or click the right mouse button on the pane1 background or on the
parameter for more information on the size of array or string the function
requires.

If you usethe Auto-Allocate input feature, adatainput terminal is not
created for the function. If the datainput terminal already exists, you should
deleteit fromthe To/From vXIplugsaplay object.

If you do not select ("check") Auto-Allocate input, both input and
output terminals are created for the function by default. You must create an
object to allocate the correct type, shape, and amount of memory and
connect it to the input terminal. See “Passing Parameters’ on page 246 for
information on how to manually allocate the memory needed for inputs.

Be sure to allocate enough memory for all the values the function wantsto
return. If insufficient memory is allocated, this action will overwrite
memory and cause a General Protection Fault or Segmentation Violation.
Sincethe VXlplug&play DLL islinked directly into VEE, this situation can
cause VEE to crash and exit.

Getting Help on a VXl plug& play Driver

From the object menu of the To/From vxIplugsplay object, select
Instrument Help to accessthe help file provided by the instrument
manufacturer. This help topic contains information about using the

V Xlplug&play driver including the data types required for the parameters.

For help on each particular function, see “ Getting Help on a V XIplug& play
Function Panel” on page 239.

Chapter 7 243

Initializing and
Closing Drivers

Advanced
Initialization
Information

Using VXlplugé&play Drivers
Using the To/From VXIplug&play Object

Running a VEE Program

Thetransactionsinthe To/From vXIplugaplay oObject execute from top
to bottom. This section explains what happens when To/From
VXIplug&play Objects execute.

Thefirst time you run a program after you load or create it, adelay occurs
to initialize each instrument controlled with To/From vxIplug&play
objects. Thisinitialization sets the instrument to a known initial state. Each
subsequent time you run the program, your program executes normally,
without performing the initialize actions.

Each instrument controlled by the program must beinitialized oncein a
VEE session. The V Xlplug& play Resource Manager does an "instrument
find" to verify the instrument is connected to the address and to set the
instrument to aknown state. Thiswill take an indeterminate amount of time,
possibly up to 10 seconds per instrument. This delay happens the first time
the To/From VXIplugs&play Object for each instrument is executed.

Because the initialization is only performed once per VEE session, you
should execute functions (such as clear or reset) that set an instrument to a
known state every time the program runs. When you load another program
or exit VEE, the V Xlplug&play drivers are automatically closed.

This section explains some of the details behind some of the VEE
implementation of VXIplug&play initialization. Understanding these
conceptsis not required to successfully write a VEE program that uses
V Xlplug&play drivers.

Each VXlplug&play driver isrequired to have a PREFIX init () anda
PREFIX close () function. These functions are called automatically by
VEE.

The purpose of the init () function isto set your instrument to aknown
state and to get a "session handle". Each instrument specified by a VEE
Name, When configured, will have a unique session handle assigned the first
timeit is executed in a program. That session handleis used through the
program to uniquely identify that instrument.

All To/From VXIplugs&play objects communicating with the same
instrument (with the same VEE Name) are identified by the same session

244 Chapter 7

Error and Caution
Checking

Using VXlplug&play Drivers
Using the To/From VXIplugé&play Object

handle. The session handle is shown inthe vi field in the lower |eft corner
of panel tab of the function panel. VEE automatically takes care of passing
this session handle between the various To/From VXIplug&play Objects.

Becausethe init () call isusually alengthy operation, it isonly called
when necessary. When the first To/From vxIplugs&play objectis
executed in a program, the appropriate init () functioniscaled. When
init () iscalled, it may aso perform an Identification Query
and/or areset depending on how you configured the driver.

The purpose of the close () function isto close the session handle (there
are alimited number of them), take the instrument off-line, clear any data
associated with the instrument, and perform instrument-specific actions, if
needed. VEE callsthe close () function at the following times:

B After New, Open, Or Exit isselected.

B Whenall To/From vXIplugsplay objectsfor asingle VEE Name
(such as dvm) are deleted.

B Whentheaddress or init () parameter values are changed in the
VXIplug&play Instrument Properties dialog box. In thiscase,
close () iscaled sothat init () will be called again with the new
values.

After each transaction is executed, the function returns a status value to
VEE, which automatically checks this value. If the value indicates that the
function executed successfully, the next transaction executes.

Error Checking. If the status value returned indicates an error, VEE stops
the program and reports the error. If you have an error output pin to trap the
error, the error output pin propagates instead of stopping the program. Use
theerrorinfo () object to get the details of the error message.

VEE automatically callsthe PREFIX error message () functionto get as
much error information from the V Xlplug&play driver as the manufacturer
includes. Thisinformation is output in the VEE error message or from
errorInfo().

Chapter 7 245

Note

Note

Passing Parameters

Caution

Using VXlplugé&play Drivers
Using the To/From VXIplug&play Object

After an error occurs the instrument is left in an unknown state. Unless you
call specific reset or clear functions at the beginning of your program, you
will not know the state of your instruments the next time you start the
program.

Caution Checking. If the status value returned is a caution, the program
pauses and displays a caution dialog box. The caution dialog box contains
information from the instrument manufacturer and | ets you choose to
continue running the program or stop.

Caution messages cannot be trapped programmatically. However, if you are
aware of the common caution messages from the driver, you can handle
them in the VEE program. For example, if you get a caution message that
the instrument is not ready to let you read data, you can use aDelay object
or put the To/From VXIplug&play object in aloop to retry reading.

If you handle aknown caution condition in the VEE program, you may want
to suppress the caution message dialog box. To do this, from the

To/From VXIplug&play object’s Properties dialogbox select the
check box for Ignore Ccautions Returned.

Generally, ignoring caution messages (by checking the Ignore Cautions
Returned check box) isnot necessary and, unless you are sure of how to
handle the caution condition in your program, is discouraged.

According to the V XIplug& play specification, you must allocate memory
and passit to the driver before requesting data. Some V X|plug& play
functions place the data read into an array. Most of these V X1plug& play
functions also have a parameter that specifiesthe size of the array sent inand
will error if the array is not big enough. In this case, you may alocate an
array of any size and tell the function how big it is. The function will then
write datainto the array only to the size specified.

Other V Xl plug& play functions assume the array passed in is big enough for
the data read and write to it regardless of itssize. Thisis especially common
for Text strings. If insufficient memory is allocated, this action will
overwrite memory and cause a General Protection Fault or Segmentation

246 Chapter 7

Note

Using VXlplug&play Drivers
Using the To/From VXIplugé&play Object

Violation. Since the V XlIplug&play DLL islinked directly into VEE, this
situation can cause VEE to crash and exit.

The most straightforward method to allocate memory for an array or string
datainput isto usethe auto-Allocate feature. See “ Getting Help on a

V XIplug& play Function Panel” on page 239. You still need to determine the
size to allocate, but once you specify the size, the memory is allocated
automatically.

Find out how much memory you need for your data by reading the driver's
help file. Select Instrument Help fromthe To/From VXIplug&play
object's object menu. This help file tells you how large the array must be.

If you do not use auto-Allocate, you must create an object to allocate
the memory and connect it to the datainput terminal of the To/From
VXIplug&play object:

B For anarray input, usean Alloc Array object of the appropriate type,
and set the size appropriately.

B For astring input, use a Formula object. Delete the data input terminal
from the Formula object and enter an expression like 256*"a". This
creates astring that is 256 characters long (plus anull byte) filled with
a's. Most V Xlplug&play functions will not write more than 256
charactersinto a Text parameter. However, it is best to check the help
on each function panel that requires a Text input to be sure.

Chapter 7 247

An Exam
Program

Using VXlplugé&play Drivers

Using the To/From VXIplug&play Object

ple Figure 7-6 shows a simple program that uses To/From VXIplug&play
objects to communicate with the HP E1410A VXI Multimeter:

|

To/From hp e1410

hpe1410_reset(instrHandle)

hpel410_canfiguredinstrHandle, hpel 41 0_COMF_WOLT_DC)

hpel410_voltDcRanglinstrHandle, WI_TRUE, hpe1410_WOLT_RAMG_30MY,
hpel410_sampladinstrHandle, 1, hpel410_SAMP_SOURE_IMb, 1)

= Double-Click to Add Function =

|

ToiFram bp el410

(=]

hpel410_read_tinstrHand :
readings

_'M = Double-Click to

= Alloc Realfi4 =
Mum Dims | 1 'I
[linRamp =[] 1 [10
Array
Dim Size
1 [20

= —| Alphatlumeric | «
00: 2856
01: 2857
02: 2058
03: 2058
04 2058
05: 2.050
06: 2.000
07: 2.800
08: 2,991
09: 2002
= i Trace =
ERE NN RN
Y name 2938 I_f
2398
2,994 7
2,992
233
- ‘_/ -
Trace1 2888 "]
2.988
2 984 ; L L L L L L L

X hame

Figure 7-6. A Program Using To/From VXIplug&play Objects

248

Chapter 7

Limitations to
VXlplug&play

Note

Using VXlplug&play Drivers
Using the To/From VXIplugé&play Object

There are some limitations to using V Xlplug&play driversin VEE.

B BecausetheBus I/0 Monitor object only shows|/O to and from
VEE itself, it does not show any 1/0 from V Xlplug&play drivers.
V Xlplug&play drivers are C programs that are linked into VEE. We
recommend that you use a hardware bus monitor, if needed.

B Some optional features that are not required by the VX1 plug&play
specification, such as callbacks, are not supported by VEE.

B All 1/0 = Advanced 1/0 objects(including Interface
Operations, Instrument Event (SPOLL), and Interface Event)
are not supported for VXIplug& play.

B VXIlplug&play does not support the concept of LIVE MODE/NOT LIVE
MODE. When you run a program, all instruments used in your program
must be connected to your computer. However, you can open a program
without the instruments used in the program being connected. Also, you
can create a program without having the instruments connected. You can
use To/From VXIplug&aplay objectsand specify the function calls as
long asthe V Xlplug&play driver isinstalled.

B You cannot use V Xlplug&play drivers and any of the other VEE
instrument control methods (Direct I/0,Panel Driver, Of
Component Driver objects) to communicate with the same instrument
in the same program. However, you can use V Xlplug& play drivers for
one instrument and other instrument control methods for other
instruments in the same program.

The VXl plug& play specification is continually being updated and enhanced.
New features may be voted into the specification by the V X Iplug& play
consortium between revisions of VEE. Because the V Xlplug&play
specification does not specify that revision information should be included
in the driver library, VEE cannot check the driver for compatibility.
Therefore, you need to check with the instrument manufacturer to make sure
the driver conforms to the currently supported V X1plug& play specification.

Chapter 7 249

Using VXlplugé&play Drivers
Using VXIplug&play Functions from Call Objects

Using VXl plug& play Functions from Call
Objects

You may want to use V Xlplug&play with a VEE cal1 object for the
following reasons:

B Existing Program Compatibility.

If you have existing programs using V XIplug& play that were created
using VEE Version 3.1, you may want to continue to use them with
minimal modifications. However, if you plan to maintain these programs
over the long term, it would be better to rewrite them using the standard
function panel accessin the To/From vXIplugsaplay Object as
described in “Using the To/From V X1plug& play Object” on page 235.

B Accessto Older Drivers.

Some earlier versions of non-HP V X1plug& play drivers (1995 and earlier)
were written to earlier versions of the V XIplug& play specification. You
can still access these drivers through the VEE call object.

Except for the reasons listed above, you should use V XIplug&play drivers
with the methods described in “Using the To/From V XIplugé& play Object”
on page 235.

Using a Dynamic Link Library or Shared Library in
VEE

This section will show you the stepsin loading a V Xlplug&play driver into
VEE once the required files are installed.

To useaV Xlplug&play driver in aVEE program, do the following:
1. Import the library.
2. Run the routines which use the library.

3. Delete thelibrary when the program is done.

250 Chapter 7

Importing the Library

Calling a
VXlplugé&play Driver
from VEE

Using VXlplug&play Drivers
Using VXIplug&play Functions from Call Objects

The three VEE objects associated with these steps are Import Library,
Call,andDelete Library.

Before you can useacall object (or Formula object) to execute the driver,
you must import the function into the VEE environment viathe
Import Library object.

Inthe Import Library object, under Library Type, Select Compiled
Function. Enter the path and name of PREFIX.h usingtheDefinition
File button. See Table 2-2, “Location of WIN95 and WINNT Framework
Driver Files,” on page 47 and Table 2-3, “Location of HP-UX Framework

Driver Files,” on page 48 for the location of these files.

Then, select the path and name of PREFIX_32.DLL (PREFIX.s1 on
HP-UX) usingthe File Name button. The Library Name button assigns
alogical nameto a set of functions. It is recommended that the name be
PREFI X, where PREFI X refers to the name of the instrument, such as

HP E1410.

Before using a driver with the ca11 object, you must configure the call
object. The easiest way to do thisisto select Load Lib from the

Import Library object menu to load the driver fileinto the VEE
environment. Bring up acal1l object from the Device menu. Then, select
Select Function onthecall object menu. VEE will bring up adialog
box with alist of all the functions listed in the header file that are exported
from driver file.

Useacall object to makethe callsto aV Xlplug&play driver.

Sequence of Calls. The sequence of callsfor aV Xlplug&play driver isvery
important. The sequenceis:

1. Cdl theinitialize function. (This function returns a session handle.)

2. Perform callsto the driver using the handle returned by the initialization
function.

3. Cadll the close function.

Chapter 7 251

Using VXlplugé&play Drivers
Using VXIplug&play Functions from Call Objects

Initialize Function. The initialize function PREFIX init hasthreeinput
pins and two output pins.

The three input parameters are:
B |nstrument Address

See “ Configuring for a VXlIplug&play Driver” on page 79 for
information about V X Iplug& play addressing.

W [dentification Verification Flag

If the verification flag is 1, theinitialize function checks the identity of
the instrument. Thisisto be done by checking the manufacturer ID and
model number, using the " * IDN? " query, or other means specified by the
instrument manufacturer. Set the flag to o if the check should not be
done.

B Reset Flag

The reset flag should be 1 if the initialize function isto place the
instrument in a pre-defined state. Set the flag to o if the reset should not
be done.

The two output parameters are:
B Return Value

V Xlplug& play defines the return value from a V Xlplug& play driver to

be the status of the operation performed. The integer returned can be
translated into ameaningful message by calling PREFIX error query
from aseparate call object. If thereturn valueis o, the init () call was
successful.

B Handlefor VXIplug& play Functions

If the return value from the initialize function is o, the output parameter
contains an instrument handle. An instrument handle is ssimply a number
which associates a function call with thisinitialization. Most

V Xlplug& play functions require this handle as an input parameter.

252 Chapter 7

Deleting the Library

Using VXlplug&play Drivers
Using VXIplug&play Functions from Call Objects

Each initialization returns a unique handle in the output parameter vi.
The parameter may be called by a different name, such as session
handle, but it isalwaysthe last parameter returned from the init ()
function. When the close () function is called, the handle is returned to
the system.

Calling VXIplug& play Functions. Other functions can be called using the
call object. For each function called, the handle from the PREFIX init
function must be provided to the instrID input pin of the call object.

Using Other Common VXl plug& play Functions. Besides the

PREFIX init and PREFIX close functions, V Xlplug&play drivers may
implement other common driver functions. These functions are

PREFIX reset, PREFIX self test, PREFIX revision gquery,
PREFIX error query, and PREFIX error message.

Using Arrays As Parameters. The V XIplug& play specification states that
the caller must allocate space for an array or text parameter. This means that
VEE must dlocate the array before passing it as a parameter to the

V Xlplug&play function, as shown in Figure 7-8.

Using the Close Function. The close function PREFIX close hasone
input parameter and no output parameters. The input parameter isthe handle
returned from PREFIX init. Executing PREFIX close takesthe
instrument off-line and clears any data associated with the instrument
handle. There may a so be some other driver-specific actions related to
closing the instrument. The handle cannot be used again by instrument
functions. The PREFIX_init routine must be called again to obtain a

new handle.

After you finish using the V Xlplug&play driver, theDelete Library
object needs to be invoked for each driver loaded. After the library is
unloaded, the library must be loaded again using the Tmport Library
object before any functions using that library can be called.

Chapter 7 253

Using VXlplugé&play Drivers
Using VXIplug&play Functions from Call Objects

A Simple Example Figure 7-7 is an example program using aV XIplug&play driver in VEE. This
program imports the library, initializes the device, closes the device, and
deletes the library. (Each program thread is started independently with
astart button.)

= Impart Library =

Library Type | Compiled Function =l

Library Mame | hpe1410

File Mame CywHipnpwin25sbinthpe1410_32.dil |

Definition File Chwripnpwin2Siincludeshpe1410.h |
—| Address || Sta
|GPIBD:9:7

1 = Initialize = _
—~| 1D Guery || InstrDesc B Ret'alue 1al=0
|D id_guery —

— | hpe1410.hpe1410_init v

[Reset [« |f Raise Errar |
b = Close =]

: Function Name
ﬂ| hpe1410.hpel410_close

RetVvalue |

= Delete Library =

Library Name [hpeTdio

Figure 7-7. Simple Example: Using VXIplug&play Drivers

254 Chapter 7

Using VXIplug&play Drivers
Using VXIplug&play Functions from Call Objects

A More Complete Figure 7-8 shows a more compl ete example program that uses a

Example V Xlplug&play driver and allocates an array to be used as an output
parameter.

Address Stfrt | ~| Alphahumeric | <

D ClUeryb—1 Initialize g

Reset

Import Libraryl Delete Libraryl

—|Text] <]

Call Function

=]

?‘
]

i

—|Real «| f_| voltRang
|

woltFunc

Function Marme

Ret‘alue

]

—|Integer| «

voltRes

hpe1410.hpe1410_confvolt

ﬁ

JCTI al=0

Call Function

vl

Function Mame

sampCoun | | hpe1410.npe1410_sampCoun

Retalue |

Raise Error |

1
Call Function

[=

Function Name

—| Logging AlphaMumeric | «
43864
43.03 4
43.08 0

43,28

ml

)

43,3590

42,964

43,12

1] [hpetd1dhpe1d10_initmm Rt Value |
= Call Function [
| Function Name Ret value

readings
Alloc Reall { readings | hpeld410.hpet1410_fetc_Q numReadings
—| Cloge =

Function Name

il

hpe1410.hpe1410_close

Ret‘alue |

—|AlphaMumeric | «
Fi

Figure 7-8. More Complete Example: Using VXIplug&play Drivers

Chapter 7

255

Using VXlplugé&play Drivers
Using VXIplug&play Functions from Call Objects

Some Helpful Hints Keeping Track of Handles. The handle returned by PREFIX_ init must
be used by successive driver functions. There are two ways to accomplish
this:

B Connecting Pins

The value of a handle can be passed by connecting the PREFIX init
routine data output pin to the vi datainput pins on each function.

B Keeping Track of Handles Globally

The handle can be kept as a global variable. The handle from
PREFIX init routineisconnected to aset Global object. Each
function that uses this handle, takesit from acet Global object.

Control Flow. The driver needs to perform actions in a certain sequence
(initialization, calling functions, and closing). The VEE program must be
written to ensure that the handleis valid for all functions that require its

usage.

256 Chapter 7

Data Propagation

Data Propagation

You can create VEE programs by applying textual programming language
techniques, visually recreating a written program. However, you may find it
more efficient to produce the program with VEE objects, thinking in terms
of data propagation between the objects. This chapter explains data
propagation techniques for VEE, including:

B Understanding Propagation

B Propagation in UserObjects

B Controlling Program Flow

B Handling Propagation Problems

258 Chapter 8

Data Propagation
Understanding Propagation

Under standing Propagation

Propagation is the general flow of execution through aVEE program. The
propagation guidelines define the order in which VEE objects operate. In
general, propagation is determined by data flow - the flow of datafrom
object to object within an VEE program.

How Objects Operate

A VEE object operates by accepting the data on itsinput pins, processing
that data, and returning the resulting data on its output pins. A VEE object
will not operate until al of its datainput pins are activated with data on
them. (There is one exception. The gcT object will operate when one of its
datainput pinsis activated with data.)

In the program in Figure 8-1, the a+b object will not operate until thereis
data on both of its datainput pins. Both of the Real constant objects must
operate first (in no particular order).

—_ Reglﬁd F
h - —-|AIphaN-umeric| =

athb——]

-3 Realdd| - J—l— -

Figure 8-1. The a+b Object Propagates When Both Inputs Have Data

When the a+b object operates, it adds the data and activates its output pin
with the resulting data. The AlphaNumeric oObject does not operate until its
datainput pin has data so it operates last, displaying the result.

Asyou can see, data flow has determined the order of operation of the
objectsin the above program. That is, data flow determines the propagation
order.

Chapter 8 259

Data Propagation
Understanding Propagation

The sequence pins also can be used as a hold-off to control when an object
operates. Thisis useful when you want to prevent the object from operating
until valid datais available. In the program in Figure 8-2, a Confirm OK
object has been added to the previous example.

—|Realsd

O-K !
lzi

athb———H

—3 Realdd| - J—l— -

- AIphaN-umeric|)

Figure 8-2. Controlling Propagation Using a Sequence Input Pin

The sequence output pin of the confirm OK object is connected to the
sequence input pin of the a+b object. Sequence input pins need not be
connected. If a sequence input pin is not connected, it isignored by the
object. However, if a sequence input pin is connected, the object will not
operate until it has been activated. In the above example the a+b object will
not operate until you press (click) the ok button. Then the data input pins
accept the data and the object executes.

The xEQ pin has the opposite effect on object operation. An object
propagates immediately when the xeqQ pin is activated using any data present
onitsdatainput pins. Thisisimportant to consider when using both the xEQ
pin and sequence input pin on an object. The XEQ pin must be connected and
the object will not propagate until the xeQ pin is activated. Figure 8-3 isan
example.

—| Alphakumeric | -

—|For count| - = Collector = 0: 0
I 5 Data | Qutput Shape by

22

Arra\,r'
. o
YEQ n+1 Dim Arrayl 33

4: 4

Figure 8-3. Controlling Propagation Using the XEQ Pin

260 Chapter 8

Note

Data Propagation
Understanding Propagation

The For Count Object repeats five times, outputting datato the bata input
terminal onthecollector. Thecollector collectsthefivevauesinto an
array, which it propagates when the xeqQ terminal is activated by the
seguence output pin of the For Count object.

You can use Properties from the object menu to turn on show
Terminals. With Show Terminals turned on the datainput and output
pins become “terminals’, showing their names.

Basic Propagation Order

Based on the propagation rules, the objectsin a VEE program executing in
VEE 4 mode and higher operate in the following basic order when you press
Run:

1. Objectsthat have no datainput pins and no sequence input pins
connected operate first.

2. Other objects operate in the order determined by data flow. In other
words, objects with data input pins operate only when datais present on
al datainputs, except for JCT, XEQ and sequence pins as noted in “How
Objects Operate” on page 259.

3. The order of propagation can be modified by connecting sequence pins.

The next section, Pins and Propagation, describes how various pins work.

Pins and Propagation

Thistopic summarizesal types of pinsand their effect on propagation. Inan
object’s open view you can view pin labels and get terminal information
when show Terminalsinthe Properties dialogboxison, asFigure 8-4
shows. Objects may not contain all of the pins described here.

Chapter 8 261

Data Propagation
Understanding Propagation

Sequence In

- Collectar =
— 1 Dat
Data In | Data | o shape

Control—— 1 Clear
XEQ HEQ

Array | Data Out

n+1 Dim Array| | Eror|

Sequence Qut

Error

Figure 8-4. Pins Available on Objects
B Datapinsinput or output a data container.

U An object will not operate until all of its data input pins are activated.
(Except the gcT object, which operates when any datainput pinis
activated.)

U After an object operates, its data output pins propagate (if no error
conditions have occurred).

Some objects may not propagate all of their data output pins, which can
cause confusing behavior. Such objectsinclude 1£/Then/Else,
DeMultiplexer, Comparator, and all Data = Dialog Box Objects.
Please see “Handling Propagation Problems’ on page 284 for more
information.

B Control pins (optional) are inputs that affect the state of the object but
have no effect on propagation. Common control pinsinclude clear,
Reset and Default Value. Outputsfrom other objectsto control pins
are connected with dashed lines to indicate that propagation is not
affected.

Since control pins do not affect propagation, there are some conditions
where your program may not run correctly. See “Handling Propagation
Problems” on page 284 for more information about control pins.

B Seguence pins are used only to specify the order of execution. They are
useful to resolve ambiguity in a program’s propagation. Sequence pins

262 Chapter 8

Note

Data Propagation
Understanding Propagation

generally are not necessary and can be overused so you should not use
them as a substitute for clear data flow.

U An object operates only after all datainput pins and sequence input
pins (if connected) are activated.

A sequence input pin is activated by the presence of a data container,
but the data in the container isignored.

U A sequence output pin propagates after all the data output pins have
activated and data flow has propagated as far as possible.

A sequence output pin propagates an empty (nil) container when it
activates.

B Error pin (optiona). You can add an Error pin to trap an error condition
the object generates. The Exrror pin propagates the appropriate error
number if an error condition occurs.

If an error occurs, the Error pin and the sequence output pin (if
connected) propagate. Data output pins stop propagating immediately
when an error occurs. You should be aware of this potentially confusing
behavior since some data output pins may propagate before the error
condition occurs.

B xEQ pinisapin that forces an object to operate immediately (evenif a
datainput pin has not yet been activated). Only the collector and
Sample & Hold objectsuse an xEQ pin to force the object to execute
immediately and propagate its data.

The xEQ pin is activated by the presence of a data container, but the data
in the container isignored.

Do not leave any datainput pins or the XxEQ pin unconnected or an error will
occur when you run your program.

You may leave data output pins, control pinsand Error pins unconnected.
Sequence pins should be | eft unconnected except when needed to resolve
ambiguous program propagation.

Chapter 8 263

Data Propagation
Understanding Propagation

See “Handling Propagation Problems’ on page 284 for more information.

Propagation of Threadsand Subthreads

A very simple VEE program usually contains only one thread. Programs that
are more complicated contain additional threads and subthreads that affect
the program’s propagation.

B Threads — Objects connected through data and sequence lines, which are
solid, form athread. Objects connected only through control lines, which
are dashed, are not considered to be in athread. A program can contain
several threads. For example, the program in Figure 8-5 contains two
parallel threads. The threads are independent because they are not
connected by data or sequence lines.

—|Realsd] =
2 = :
- 1 — | AlphaMumeric| «

a+h &

—|Realbd] -
3

= Texd = — | AlphaMumearic | -
[Maw is the time. i 1 Mow is the time.

Figure 8-5. A Program with Two Parallel Threads

B Subthreads— A branch of athread is called a subthread. When two
subthreads begin at the same data output pin of the same object and there
are no sequence or data lines between them, they are parallel subthreads.
The program in Figure 8-6 showstwo parallel subthreads branching from
the data output pin of the Reale64 constant object:

264 Chapter 8

Data Propagation
Understanding Propagation

—| Realfi4 |. _ —| AlphaNumeric | «|
- amingo}—— 011

—| AlphaNumeric | «|

Figure 8-6. A Program with Two Parallel Subthreads

Paralld threads and subthreads operate in random order relative to each
other. One or more objects (or all objects) in athread will operate, then one
or more in another thread operate. However, there are two exceptionsto this:

B |f athread contains an Interface Event Or Instrument Event
object, it takes over execution when an event is trapped. For example, if
Interface Event detectsaGPIB srQ message, the thread will
continue to completion before any other thread can continue. Other
threads are held off to allow the event to be serviced. For further
information, see Interface Event and Instrument Event in
VEE Online Help.

B |f athread hasastart object and if you start the thread by pressing the
Start button, that thread will run to completion before you can start any
other threads. The start object is not recommended for VEE 4 mode
and higher.

Propagation Summary

Thefollowing is asummary of the propagation rules VEE uses when a
program executesin VEE 4 Execution Mode or higher:

B Data flows through objects from left-to-right — sequence flows from
top-to-bottom.

B All dataand XEQ input pins must be connected.

B Objectswith no datainput pins or sequence input pin connections operate
first.

Chapter 8 265

Data Propagation
Understanding Propagation

B All datainput pins must be activated before an object operates (except for
the gcT object).

B [f the sequence input pin is connected it must be activated before an
object can operate.

B Objects operate only once unless connected to a repeat object (for
example, For Count) or unless forced to operate by an XEQ pin.

B Control pins execute immediately and do not cause the abject to operate
or propagate. See " Capturing Control Pin Errors’ on page 285.

B When an error isgenerated from an object with an Error pin, the Error
pin propagates instead of the data output pins. However, the sequence
output pinis activated. (If thereisno Error pin, an error messageis

displayed.)
B Paralel subthreads may operate in any order.

B Multiple threads may operate in any order.

266 Chapter 8

Data Propagation
Propagation in UserObjects

Propagation in User Objects

A UserObject provides the meansfor you to encapsulate a group of
objects that perform a particular task into a single, custom abject. This
encapsulation allows you to:

B Use modular design techniques in building your VEE program. This
allows you to solve a complex problem through an organized approach.
UserObijects alow you to use top-down design techniques to create a
more flexible and maintainable program.

B Build user-defined objects that you can save in alibrary for later re-use.
OnceauserObject iscreated and saved, you can Merge it in other
programs.

User Object Features

When you add a UserObject to the Main Window, it appearsin an icon view
and remains that way in your program. When you double-click theicon, the
UserObject’s edit window pops up presenting the work area where you can
build a specific program segment by adding objects and connecting them.
Theterminal areas accommodate data and control terminals so the
UserObject can communicate with the rest of your program. Figure 8-7
shows the UserObject named UserObject1 initsicon view and edit
window.

Chapter 8 267

lcon View
Edit Window

Object Menu
Button

Data Propagation
Propagation in UserObjects

Minimize Button

—TUserChject | Maximize Button

Close Button
2 Malel EY
UserObject
UserChjectz | Work Area
4] %]
Input Terminal —— —— QOutput Terminal
Area Area

Figure 8-7. UserObject Features

Contexts and User Objects

The Main Window and UserObjects represent separate contexts within a
VEE program, just as subprograms represent separate contexts within a C or
BASIC program. As shown in Figure 8-7, you can nest UserObjectsin a
VEE program, which results in additional contexts. In Figure 8-7, there are
three contexts. More objects can be added to each context.

1. The Main Window is one context that contains UserObject1.
2. UserObjectl isacontext and contains UserObject2.

3. UserObject2 isacontext that can contain other objects.

Propagation and User Objects

Propagation in a program containing UserObjects is affected by the fact that
aUserObject is a separate context. The UserObject propagation rules are as
follows:

268 Chapter 8

Note

Data Propagation
Propagation in UserObjects

The propagation rules for UserObjects also apply to UserFunctions. For
detailed information about UserFunctions see Chapter 12, “User-Defined
Functionsg/Libraries’.

B All datainput terminals (and the sequence input terminal if connected)
of the userobject must be activated before any objects within the
UserObject operate.

B When the datainput terminals (and the sequence input terminal if
connected) of the Userobject have been activated the UserObject
operates. The objectswithinthe userobject operatefollowing the rules
of propagation.

B UserObjectsin programswritten before VEE Version 4.0 may contain an
optional xeQ terminal. If it is activated, the Userobject immediately
begins operation of the objects within it, using whatever “old” data may
be on the inactivated input terminals of the Userobject.

In most cases, you need not use the XEQ terminal for auserobject.
It isnot available in VEE 4.0 and | ater versions and existing programs
with XEQ pins on UserObjects Will not compileif runin

the VEE 4 or higher Execution Modes.

B TheUseroObject dataoutput terminals do not propagate until all objects
within the Userobject finish operating (unless the UserObiject is
exited prematurely by an error or an Exit UserObject). Only those
output terminals activated from inside the Userobject pass datato
objects outside the userobject. When activated, each data output
terminal propagates only one data container.

B |n programs written before VEE Version 4.0 (running in the VEE 3
Execution Mode) the objects within the Userobject time-sharein
operation with external objects on different subthreads. Thisistime-
dicing. Theuserobject doesnot block the operation of objects outside
the UserObject. In programsrunning inthe VEE 4 or higher Execution
Modes, the Userobject will time-slice only when invoked from
separate threads.

Chapter 8 269

Note

Data Propagation
Propagation in UserObjects

For areview of the basic propagation rules see “ Propagation Summary” on
page 265.

If thereisastart objectinauserCbject, pressing start runsonly the
objects connected to the same thread as the start object. No datawill be
read from the input terminals of the userobject, nor will its output
terminals propagate. Therefore, no propagation outside the UseroObject
takes place.

Data Output from a User Object

When the objects within the userobject finish propagating, each data
output terminal of auserobject propagates only one data container (the
last received by the terminal) to the context outside the UserObject. This
can lead to unexpected resultsin your program if you neglect to account for
it. The example in Figure 8-8 illustrates this situation:

— | Alphakumeric | «
- 9
UserOhject
. — —| AlphaMumeric |
B UserObject oo
1:1
—|For count| - 29
| 10 Count 33
44
5 &
—| Collectar = I
Data | Qutput Shape fic T
Array| e
weq | +1 Dim Array le %9

Figure 8-8. Data Propagation from a UserObject

Although the For count object sends 10 data containers (the numbers 0
through 9) to the count output terminal, only one data container (the last
number) propagates from the Userobject. However, you can use a

Collector object to collect the datafrom the For Count object into an

270 Chapter 8

Data Propagation
Propagation in UserObjects

array. The array output terminal aso propagates only one data container,
but that container is a one-dimensional array of 10 values (0 through 9).

Chapter 8 271

Data Propagation
Controlling Program Flow

Controlling Program Flow

Though propagation rulesin VEE arelogical, it is not always obvious how a
program will propagate. The examplesin this section will help you
understand and apply propagation concepts when you write your own
programs. First, here are some rules of VEE programming style:

B Build aprogram using program flow that is clear and propagatesin a
hierarchical fashion. If you can visualize the flow easily, you normally
will not have problems.

W |f the execution order between objects isimportant but ambiguous,
connect sequence input and sequence output pins. Though you should not
need to use them often, there are cases when they are necessary to ensure
the execution order required for your program.

B Avoid using feedback loops for iterations. Such constructs cause
unpredictable results. Loops are intended for passing back containers
with data to the start of athread. If you must use feedback, JcT
(Junction) objects are required in feedback 1oops.

B Avoid paralel threads fed by alooping object. It is difficult to tell which
thread will be executed.

B Avoid using Gate and sample & Hold objects. These objects are
mainly used as patches for poor knowledge of propagation rules. Good
programming style helps avoid the need for these objects.

Basic Program Control

It isimportant to understand how basic combinations of objects work
together to control program flow. The program in Figure 8-9 shows how to
generate asimple count useful for aloop, a common program control. The
For Count object countsfrom O through 9 when the program runs.

272 Chapter 8

Data Propagation
Controlling Program Flow

—-|F|:|r5|:|unt| E — | Logging AlphaNumeric | -

0

W00 -1 DR s LD O

Figure 8-9. A Simple Loop Counter

You can nest For Count Objectsto create nested loops. In the program in
Figure 8-10, the inner loop’s For Count counts from 0 through 9 for each
count sent to its sequence input pin by the outer loop’s For Count. The
outer For Count does not send its next output count until theinner For
Count finishesits entire loop.

When the outer For Count sendsits last count, it outputs a pulse from its
sequence output pin, activating the Beep object. Thisis an important feature
of such looping objects. They do not generate a sequence-out pulse until
after the threads they are driving have executed.

—|For Euunt| r || = CDLTnted F

WH 10

—|Far Count| || = CDLTnted F

[10 100

[e=x

Beep

Figure 8-10. A Simple Nested Loop Counter

Chapter 8 273

Data Propagation
Controlling Program Flow

Continuous Loops To generate a continuous loop, you can usean Until Break object as
shown in the program in Figure 8-11. The Delay object controls the
program to update once per second. A better approach isto replace the
Until Break With an on Cycle, which can generate a container with any
delay setting to drive the now () object. You can set the A1phaNumeric
display format in its properties dialog box on the Number tab.

|

LIntil Break

= AIphaN_umeric = ||

Lﬁmﬂ—u Tue 09/Feb/1999 150538 ||

Figure 8-11. A Simple Continuous Loop

A continuous loop is useful to repeat a program’s action until acertain
condition is met. To end thisloop at any time, add the oK, Break and Next
objects as shown in the program in Figure 8-12.

274 Chapter 8

Data Propagation
Controlling Program Flow

|

LIntil Break

= AIphaN_umeric = ||

Lﬁmﬂ—u Tue 09/Feb/1999 1558:51 ||

ooy =
Elre-akl !

[ext

Figure 8-12. Stopping a Continuous Loop

This example illustrates another feature of control constructsin two parallel
threads. The program isintended to update the time continuously, until you
press the ox to force the Break. Without the Next object, intil Break
would generate a container, then wait until everything downstream from it
executes. The time would update and the program would wait until ox is
pressed. The Next object forcesuntil Break to output containers
continuously until ok is pressed.

In this case, a stop object could be used in the place of the Break object
without making any difference.

To provide more direct control over the continuous |oop, you can use a
Toggle object. The program in Figure 8-13 shows how to use a Toggle
(inits Button format) to break aloop.

Chapter 8 275

Data Propagation
Controlling Program Flow

|

Lintil Break

—[TThenElse | «|

ESU
Else J Elreal{l

= Alphallumeric =

L?m:.|—| Tue 09/Feh/1999 16 36 58

—-|DI;E|'54 a
I 1

Figure 8-13. Using If/Then/Else to Stop a Continuous Loop

The Toggle output is connected to its Reset control input. The default
initial value is 0, which is output to the 1f/Then/Else during each loop.
While the Toggle value remains 0, program flow continues to the Now
object. Clicking the Toggle’sButton togglesthe valueto 1, which satisfies
the expression’s condition in the 1f /Then/Else and activates the Break
object.

Making Programs Given the previous techniques for loops, the program in Figure 8-14 shows

Interactive how to create a general architecture for interactive programs. Consider a
simple program where the user can select one of two actions or exit the
program by clicking the appropriate Toggle buttons:

276 Chapter 8

BVl

Until Break —| MTheniElse | «|

RTINSy

Else

Then

Elze

S

= Text |«

[¥ou pressed Key 1.

—| IfTheniElse | «|

Else

RCE)
l

Then

Elze

= Tewt |4

[¥ou pressed Key 2.

—| TiThenElse | «|

=N

Else

Then
Else

Elreakl

Data Propagation
Controlling Program Flow

1
JCT

—| AlphaMumeric | «

You pressed Key 2.

Figure 8-14. Using the Until Break Loop to Select a Program’s Subthread

The concept isthat each separate action has its own parallel thread. The loop
continuously checks each Toggle object’s output (initial value is 0) in each
I1f/Then/Else expression. When abutton is pressed, the Toggle’s output
changes to 1, which sends the corresponding Text output to the
AlphaNumeric display or ends the program. You can add as many parallel
threads as you like to perform 1/O and computation as needed.

Chapter 8

277

Data Propagation
Controlling Program Flow

The implication of this architecture is that the executing thread must finish
before another thread can execute. If the executing thread takes along time
to finish, you will have to wait until this thread is finished before another
thread can execute.

Advanced Program Control

Your programs can perform more complicated control tasks if you expand
the previous techniques.

Example: Initiating ~ Asan example, the program in Figure 8-15 lets the user select one of several
Program Tasks tasks or lets a service request (SRQ) from an instrument initiate a task.

When the program runs, you click the Task 1 or Task 2 buttonsto get the
appropriate display output. If you pressthe clear Status onthe Panel
Driver’'sstatus Panel, you get the SrRQ! message output, then return to
perform another task. The program stops when you click the guit button.

278 Chapter 8

Data Propagation
Controlling Program Flow

scopeZhp54a01a ¢ @ 717)

LIntil Break [fA==1

Elre-akl
. Dning-'l'ask1 |

I -
— If A== 1 |

R Dning’l’aakzl

IfA 1= EI| -
1 |
SRo: GRIBY 1ICT 1 Message Box
us 1 |

Spoll: scope2hp54a01a ¢ @ 717)
Doing SRa |

Figure 8-15. Using the Until Break Loop to Detect an Instrument’s Service Request

-

Theuntil Break object drivesthe four parallel threads within the
program that are controlled by three Toggle buttons (Task 1, Task 2,
Quit) andthe Interface Event object (SRQ:GPIB7).

Thetwo threads defined by the Task 1 and Task 2 buttons display the text
Doing Task 1 andDoing Task 2 intheMessage dialogbox. Thethread
defined by the Quit button stops the program and clears the display.

The interesting thread involves the SRQ. The HP 54501A Panel Driver,
connected totheuntil Break object, isset withitsspoll Enable (On
the Status Panel) set to request service. A service request is sent when the

Chapter 8 279

Calling Functions

Data Propagation
Controlling Program Flow

Clear Status buttonis pressed on the Status Panel. With the mask set,
the thread that handles the SRQ usesthe Interface Event object to wait
for the SRQ by using the settingsin Figure 8-16.

- SRQ: GPIBY Ir]
Interface:l GRIBY :I‘
Action: WA T | event ||

Event: SRO

Figure 8-16. SRQ Settings

When an SRQ occurs, the Interface Event object pingsthe
Instrument Event Object to do aserial poll, which clearsthe SRQ on the
scope, as Figure 8-17 shows.

= Spoall: scope? (hp_ﬁdﬁm a@iin =
Device: | scope thpsd4alMa@y1m ;l
Event | Spall |
status 1
Action: MO YWAIT |
ilash: I #H0O

Figure 8-17. Clearing SRQ

SinceNO WAIT isset, thisobject doesthe serial poll and then pingsthe Text
object. The sSrRQ! message is sent to the Message dialog box announcing
that an SRQ has occurred. The Message dialog is configured to wait for the
operator to respond. The mask valueisirrelevant.

The program in Figure 8-18 issimilar. You can call one of three user-defined
functions— A, B, or C —to initiate an action, then have the program continue
to execute the selected function.

280 Chapter 8

Data Propagation
Controlling Program Flow

BN

LIntil Break
1 T
R e
S Break|
,—iE}{ecutel_:unctinnH—rllfﬁ:ﬂ
—|Radio Buttons | - = asTE}{t{}{} =
4 Functions 3 |asTex1(}{]| Result 1—]
< FunctionB
< Function |

- Call Function =

Function Mame
Functionc

4 Function Mame | |

Figure 8-18. Using the Until Break Loop to Call a UserFunction

TheRrRadio Buttons object liststhe available functions. The Toggle
buttons let you execute the selected function or quit the program. If you
choose to execute a function, the function nameis output to the asText
Formula oObject. AsText isabuilt-in function that converts inputs to the
Text datatype.

Thetext function name is output to the call Function object’s control
input, Function Name, SO the selected function is called. When the
program runs, the operator chooses afunction nameintheradio Buttons
object and pressesthe Execute Function button.

Chapter 8 281

Note

Clearing Strip
Charts

)

IUntil Break

Data Propagation
Controlling Program Flow

Control inputs have no effect on objects’ propagation. The asText sequence
output is connected to the call Function sequence input to hold off the
Call Function propagation until after receiving the Function Name.

In arelated program flow problem, the program in Figure 8-19 generates a
strip chart that is cleared after counting a certain number of points or
whenever the user clicks a button:

rm|f¥:1| _
|_ - | Break] =] Strip Chart =
s ¥ narme
Random Mumber ll Trace1
[— - = IfThaniElse =
“—I1Clear Charti—— A |]r==10RB==100 | |Then 1 Trace!
| B | Eise Else |
r r 1 Clear
= Counter |« | Step Size: 1 Hname
Data
A Clear 71 Count I

- _

Figure 8-19. Using the Until Break Loop to Control a Strip Chart’s Data Collection

Theuntil Break object drivesthe program. It controlsthe quit Toggle,
the Random Number, Clear Chart Toggle, and Counter objectsthrough
the sequence input and output pins. Random Number (the random (high,
low) built-in function) object feedsvaluesto the strip Chart display.
The counter counts each loop iteration and outputs the count to the
If/Then/Else. The I1f/Then/Else clearsthestrip Chart and the
Counter When auser pressesthe Clear Chart button or count equals
100.

282 Chapter 8

Data Propagation
Controlling Program Flow

The Toggle Control object isdriven continuously by tntil Break,
generating a 0 most of the time. Clicking Toggle Control togglesitto 1l
and it is then reset by the feedback connection. The 1 is an input to the 1£/
Then/Else. You can change the default appearance of the Toggle

Control object by using properties (object menu) to hide the Title Bar
and then adding the Reset terminal.

Chapter 8 283

Data Propagation
Handling Propagation Problems

Handling Propagation Problems

Sometimes program results are not what you might expect due to control pin
usage, the way some objects propagate inside loops, or how parallel threads
propagate. The following guidelines can help identify such problems.

Error Handling

Error handling is an important concept in VEE. It lets you perform an action
then either repeat the action or continue after an error occurs. The program
in Figure 8-20 demonstrates thiswith adialog box to represent an action that
can have different outcomes.

Lintil Break F
Int-32|—1_l—| Farmula A8 | |
A ’Aﬁ Result 1
B i - = e
- - - Farmula: errarinfod H | — Alphahlurneric | "|
Int3z {911, "Division/todulo by Zero", <Text Array 103

[14 | 2+l
= Meszage Box 1= [_ -

Message WO Errorl

Stop |

Symbal !} Exclamation =] | g J
Buttons | =custom.= =] | - @
Default | Stop =] [tonare | Mest B
= Elre-akl
— Message Box =)
Message [The erraris ignared. Cantin ves I
Symbal Question |~ -
@ Program continues.
Buttons | rr— = -
Default | o =

F'rcngrar-n stops

Figure 8-20. Using the Until Break Loop to Handle Error Conditions

284 Chapter 8

Data Propagation
Handling Propagation Problems

This program pops up the Exclamation Message Box

asking if you want to Stop, Retry, or Ignore.
B stop pingsthe stop object to stop the program.

B Retry pingsNext to reiterate the loop and redisplay the same
Message Box.

B Ignore pingsthe Break objectto stoptheuntil Break loop.

Whenuntil Break Stops, it pingsthe Question Message Box to offer
more program-control options.

Notice that the el ement(s) to be executed sequentialy after the “1/O” loop
are connected to the sequence-out pin of theuntil Break;they are not
connected to any of the loop e ements.

Avoid using error-handling as a standard practice, particularly with a
Transaction object whose transactions contain complicated math formulas.
VEE alocates memory to execute these formulas, and if an error occurs
during execution that memory is not released, causing an incremental
memory leak.

Capturing Control Pin Errors

Since control pins execute immediately and do not cause an object to
propagate, certain conditions may cause your program to work incorrectly.
If acontrol pin causes an error, you must use special programming
techniques to capture the error programmatically.

In situations where a control pin causes an object to error, the program stops
and VEE displays an error dialog. To capture and resolve the error
programmatically, the typical solution isto add an Error output to the
object. This solution works in most cases except when a control pin causes
the error. Since control pins do not affect an object’s propagation, the object
does not propagate the error information. That is, because the control pin
does not cause the object to execute, the object cannot propagate. It is not
alowed to propagate any output pins, including the Error pin, until it has
executed. To capture an error caused by a control pin you must add an
Error output to the context that contains the object.

Chapter 8 285

Data Propagation
Handling Propagation Problems

The program in Figure 8-21 showsthe wrong way to capture an error caused
by acontrol pin. The program displays a waveform inthe Xy Trace
display. Thexy Trace hasascales control input that requires arecord
datatype to change a scale on the display. Text and Integer provide
valuesto the Build Record for the Scales control input. An Exrror
output onthe Xy Trace isintended to capture any error condition, sending
ittotheerrorinfo () function.

This program handles the error by displaying the error number and message.
The program will capture any error generated inthe Xy Trace except when
the scales control input causes an error.

=

)
LAY

=] ¢ Trace =

rF

8 03 —|
Function Generator —l—l Y Hame g g
Tracel o7

0E
0.8

— TE}{T r 04 -
h_i { 0.3 -l—lerrurinfuol—
0z
- Tracel 01 —
b, o=
1 Scales
- Build Record
— | Int32 _I
- 5 X name
10 -
| ey a3 —| vEE Error Number =]
Murmber |—j_I - -
= VEE Error Message =

Record Data Message —

More -
- = YEE Error Message =

Figure 8-21. The Incorrect Way to Capture Control Pin Errors

Running the program reveals the problem of trying to programmatically
capture an error caused by acontrol pin. The scales control pin expects a
Record containing, at a minimum, the value identifying the scale being
changed. Allowed valuesare X, Y, Y1, Y2 and Y 3.

286 Chapter 8

Data Propagation
Handling Propagation Problems

The control pin generates an error because it receives the incorrect value T
from Text. Sinceit isacontrol pin error, there is no further propagation in
XY Trace and the Error output does not receive the error information. The
program stops abruptly and VEE displaysthe error didog in Figure 8-22.

Record field 'Scale’was not found

Srales Record must contain:

Text field ‘Scale' with value X, Y (0r 1), Y2, or 3

AMD One or more of the fields: Mame, Min, Max, Mapping
{Mapping value may be “Linear or"Log")

Ohjecttitle: ¥ Trace
Ohjecttype: ¥ Plot

Etrar number: 405

GoTo | calstack| [Ciose |

Figure 8-22. Error Dialog Box

As explained previously, the correct way to capture a control pin error isto
add an Error output to the context containing the object. The programin
Figure 8-23 shows a solution wherethe Build Record and XY Trace are
put into a UserObject. Notice that thexy Trace display’sError output has
been deleted and an Error output is added to the UserObject. Also, the
UserObject’'s Error output has been connected to the errorInfo ().

Chapter 8 287

Data Propagation
Handling Propagation Problems

1A e - -
h 3 - —_
W 1UserObject ——errorinfof | VEE Effor NUmber | "|
Function Generator — 405
—|Text| 4 = VEE Error Message =
_ i = UnBuild Record = Record field 'Scale' was not found
- Mumber
—|[Int3z] - Record Data Message -
T More = VEE Error Message =
— - 0: Scales Record must contain:
1. Textfield 'Scalewith value X, ¥ {or¥1), Y2, (
2. AWD One or more of the fields: Mame, Min,
B UserObject _[8]x] 3 (Mapping value may be "Linear’ or"Log")
- 4] I i
= Wi Trace = =
Trace | 1
0s
Yname 08
Tracel 0.4
0z
o
Scale | :g.i -
-0E
Tracel '0:51‘ A I
1 Seales 0 d4m Gmizm Z0m

Tt

Hname

Figure 8-23. A Correct Way to Capture Control Pin Errors

Data Propagation on Control Pins

When an object’s control pin receives data, such as afile name or default
value, you should connect the object’s sequence input pin or the program
might fail. Since a control pin does not affect an object’s propagation, the
object will propagate when the data inputs receive data even if the control
pin'svaueis not set.

The program in Figure 8-24 shows this sequencing problem. Alloc Array
sendsdatato To File beforethedataFile2 filenameissenttotherile
Name control pin. When To File receivesthe data, it immediately changes
the contentsin datafrFilel instead of theintended dataFile2. To File
does receive the new file name on its control pin but it istoo late.

288 Chapter 8

Data Propagation
Handling Propagation Problems

= Ta File =

_ To File: Hatared |
Alloc Arra A
Ao Arrayb———d A& ¥ Clear File & PreRun & Open

—| FileMame | «| WRITE TEXT a EOL
|dataFi|e2_) File Name |

Figure 8-24. Sequencing Problems on Objects with Control Pins

To fix this problem, use To File’ssequence input to hold off the object’s
operation until after the control pin receivesits data. The program in Figure
8-25 shows that connecting File Name's Sequence outputto To File's
seguence input ensures data is written to the correct file.

= To File =
_ To File: iECiRil |
Alloc Arra A
Aloc Arayh————1 A | ¥ Clear File At PreRun & Open

—| File Mame | 4| YWRITE TEXT a EOL

W File Mame

Figure 8-25. Using the Sequence Input on Objects with Control Pins

Building a Record

When trying to build arecord of three waveforms as shown in the program
in Figure 8-26, the Build Record object will never propagate. After the
Function Generator sendsitsoutput to the DeMultiplexer, the

For Range Object startsitsloop counting from O through 2. Each count
sends the corresponding Addr out from the DeMultiplexer to the
respective Build Record input.

Chapter 8 289

Data Propagation
Handling Propagation Problems

Note

Within aloop, when an object with multiple outputs, such asthe
DeMultiplexer, Sends datafrom one output on each loop iteration the
other output values are invalidated at the beginning of each loop. This
prevents propagating possibly old, incorrect data to the next object. Thisis
also true for an object with multiple inputs, such asthe Bui1d Record.

When oneinput receives data on each loop iteration, values on all of its other
inputs are invalidated at the beginning of each loop. VEE works this way to
prevent a program from working with previous rather than current val ues,
which can cause incorrect results.

T — | DeMultiplexer| | = Build Record =
W Data | Addr 0 | A | Output Shape:
Function Generatar Addr 1 | B Record
Addr| | Addr2 | ¢ | _AmayiD | \‘
|
—|For Range| =
Frarm |D [Alphal]
- — | AlphaNumeric| =
Step |1

Figure 8-26. Invalid Data Inputs Stops Propagation on Build Record in a Loop

TheBuild Record object never propagatesits Record output due to the
way VEE loops work. In this program, each For Range iteration
invalidates the data put on the Bui1ld Record’sinputsfrom the previous
iteration. Sincethe Build Record object receives only one input on each
loop iteration, only oneinput isvalid at atime so thereisno Record output.

Build this program yourself and turn on Show Data Flow to see how the
DeMultiplexer only propagates one data output each time through the loop.

The program in Figure 8-27 makes this solution work as expected by using a
UserObject. This solution works because a UserObject’s output terminals
hold the data until the iterations are done. The data are valid on the Build
Record inputs since the UserObject sends the three outputs at the same

290 Chapter 8

Data Propagation
Handling Propagation Problems

time. When all three inputs contain valid data, the Build Record object
outputs the expected results.

=] Build Record =
- A | Output Shape:
UzerOhject B Record
S S Array 10 |
B UserObject
1/1/1/-’\/\ Addr 0 Al [
. —_ phatumeric i
e _l_| — | DeMultiplexer| « | | | DD|D'{D 00 | ‘“
Function Generator Data | Addr 0 | 001:{99.02m, 98.02m 98.02m)
Addr 1 i . o oed
002 {01951, 0.1951, 0.1951}
—|For Range| - Addr | Addr 2 I—L' Addr 1 003 {0.2903, 0.2803, 02803}
from o 004:{0.3827, 0.3837, 0.3827} =
Thru |2
Sten i | Addr2 |

Figure 8-27. Maintaining Propagation When Data Inputs are Invalid

The program in Figure 8-28 solves the problem by replacing the
DeMultiplexer Withashift Register.UnlikethebeMultiplexer
that has only one valid output at atime, the shift Register’sthree
outputs are valid simultaneously since they are all sent at the sametimeto
the Build Record’sthreeinputs. shift Register outputsthat contain
no data propagate a nil.

This particular program clocks three waveformsinto the shift Register
and then pingsthe Build Record to generate arecord of them. If you
prefer an array instead of arecord output, you can useacCollector.

Chapter 8 291

Data Propagation
Handling Propagation Problems

—|Far R—ange| r

From |III
Thru |2 ——
Step |1

= Build Recard =

— | Shift Register| -« |

A
WO

| Current | A | Qutput Shape:

Data | 1 Prey |

Function Gener

LT
ator 2 Prey | o Array 1D

= Alphahklumeric =
ooo:fo, 0,01

001: {88 02r, 98.02m, 88.02rm)}
002:{0.1951, 0.1951, 0.1951}
003:{0.2903, 0.2903, 0.2903} -

Figure 8-28. Maintaining Propagation by Preventing Invalid Data Inputs

Multiple Inputsto a Formula

Sending values to multiple inputs on a Formula object inside aloop can
cause propagation problems if the values are sent during separate |oop
cycles. As shown previoudy with the Bui1d Record object, the Formula
will not operate if any input terminals contain invalid data. Using a
DeMultiplexer object inside the loop adds to the confusion. The program
in Figure 8-29 shows the problem.

292 Chapter 8

—|For Count| -

Data Propagation
Handling Propagation Problems

— | AlphaNumeric|
0

—|Alphakiumeric | «
— 1

—| Demultiplexar| +|

Data M —'|Alphal\gumeric| r
Addr 11—

oz |

% Addr 3 —.

— | AlphaNumeric|
3

= Formula =

ﬂ [:+E Result |
— B

— | Alphariumeric | -

Figure 8-29. Invalid Data Inputs Stop Propagation on a Formulain a Loop

Working with Loops

ThepeMultiplexer isdriven by the For Count object to output asingle
value (0 through 3) for each cycle of the count. Only one value is output per
cycle so theinputs to the Formula object are made invalid after each cycle.
Since the two Formula inputs A and B are never valid at the same time, the
Formula never executes and thereis no Formula output.

You may have decided that the value of 2 on pin A isstill useful during the
next loop iteration, but VEE does not have that insight. The loop might be
calculating several coefficients for the same formula. Thereis no logical
reason to solve aformulawith half old coefficients and half new
coefficients. Asagenera rule, it issafest for a programming language to
assume that data from aprevious iteration is “stale.” That iswhy VEE
invalidates an object’s inputs at the start of each loop iteration.

There are ways to work with a situation where unchanged input values are
invalidated after aloop iteration. An example in the previous section showed
how ashift Register delivers multiple valid outputs simultaneously. A
direct way to accomplish most tasks involves using variables.The program

Chapter 8 293

Data Propagation
Handling Propagation Problems

in Figure 8-30 shows how to use variables to supply valid valuesto a
Formula object.

- = Sethival | 4]
=| i3z || N
ame
Dat — | Alphat i
[o ata [ol | Alpha Ijurmaru:| -
—| AlphaNumeric |
— | Demultiplexer| «| — 1
—|Far Caunt| « Diata M
— Addr 1 [—— — | Alphatumetic |
| 2
| i Addr 2
Addr 3 _
— | Alphatumeric |
3
—| sethwal |
Mame
1 Data |
| Myal
= Formula | «] —|Alpharkiumeric | «
——— A | [ariival Result | g

Figure 8-30. Using a Variable to Prevent Invalid Data Inputs on a Formula

There are two important points about the way the global variable Nval is
used in this program. First, Nval isinitialized when the program starts
running. It is not necessary to do so in this particular program, since VEE
initializes it before it isused, but it's a good programming practice. Second,
Nval isaways set with anew value before the Formula usesit.

You must be sure always to set a variable before an object must use it, or
your program will have a problem similar to those with invalid data. If the
variableisinitialized, its value might be incorrect. If the variable is not
initialized, your program will cause an error, such asvariable was not
found.

294 Chapter 8

Data Propagation
Handling Propagation Problems

Timing Events

The Timer object can display odd (possibly bad) results depending on how
it is connected in a program. The program in Figure 8-31 demonstrates how
V EE propagation issues should influence the way you connect objectsin a
program.

Block 1 |

= Timer =
Timed | airam
Block 2 Timez2 | TN ESE
1 Block 3 | 1 Block4 |

Figure 8-31. Uncontrolled Timer Inputs can Cause Timing Errors

The“Blocks’ in this program are arbitrary threads containing some
combination of VEE objects. The Timer has been added to time how long
Block 2 takesto execute. Thisprogram may run or cause an error.

If it runs, the Timer may produce an erroneous result. There are two
problems that affect when the Timer startstiming and when it ends.

First, theBlock 1 sequenceoutput “pings’ bothBlock 2 andthe Timer’s
Time1 input. The program does not specify which to ping first so it can
choose either. If it chooses Block 2 first, it will not ping Time1 until
Block 2 isdone. Thiscondition can cause abad timing result or an error if
Block 2'soutput pings Time2 before Time1 is pinged.

Even if you turn on the show Data Flow debugging feature to help
identify the problem, the data flow indicators may not fully indicate the
actual propagation. In this situation, propagation depends on the order in

Chapter 8 295

Data Propagation
Handling Propagation Problems

which you connected the linesfrom Block 1’s sequence output tOo Time1l
and Block 2.

The second problem concernsthe Block 2 output connection to the
Timer'STime2 input. Sinceit isalso connected to the inputs of Block 3 and
4, there is no guarantee which input operates first. This can cause a bad
timing result.

Figure 8-32 shows away you can revise the program to ensure correct
propagation and accurate timing. Insert a Do object between B1ock 1 and
Block 2 and connecttheBlock 2 sequence output to the Time2 input.
The Do object forces the order in which objects operate as shown by the
numbers surrounding it in the program.

The output pinson Block 2 operate in the order shown by the numbers
around it. By connecting the Block 2 sequence output pin to the Time2
input, the Timer displaysitsresult after Block 2 and al the blocksits
output pin is driving have completed. Likewise, if there are other blocks
connected to Block 2'Ssequence output pin, insert another Do object to
ensure correct propagation.

Block 1 |

1 = Tirmer =

- (7 :
Cio 1 Time1
3_| { Times gau T2-T1n

Block 2

g 1 Block 3 | 1 Block 4 |

Figure 8-32. Using the Do Object with Timer for Accurate Results

296 Chapter 8

Math Operations

Math Operations

This chapter describes math operations on scalars and arrays, including:

B Understanding Data Containers
B Data Type Conversions

B Processing Data

B Array Operationsin VEE

B Array Operationsin VEE

298 Chapter9

Math Operations
Understanding Data Containers

Understanding Data Containers

Propagation of datathrough a VEE program consists of movement of data
containers from one object to another. The data container isthe VEE internal
dataformat. Every data container has both a datatype (text, real, etc.) and a
data shape (scalar, one-dimensional array, etc.).

Data Container Operation

A data container may have only asingle valueinit, or it may have an array
of several values. In either case, only one data container propagates from a
particular data output pin when an object operates.

For the example program in Figure 9-1, the Real64 constant object is
configured as aone-dimensional array. The Int32 constant object is
configured as a scalar.

—| Reslss |- —| AlphaNumeric | - |
: 0:2.1
0002: 3.21 | o RS
0003:2.11 A+ Bh—a2: 421
p004: 1.03 -
= —|nt3z = 331
= [5:' 4:2.03

Figure 9-1. VEE Automatically Converts Data Types as Needed

When the program runs, the Real64 constant object propagates a data
container that is a one-dimensional real array. The 1nt32 constant object
outputs a data container that is an integer scalar (the value 1). VEE provides
automatic data type conversion to add these two containers.

VEE “promotes’ the integer value 1 to become an equivalent Real value
(1.0). The a+b object then adds the Real value 1. 0 to every element in the
one-dimensional real array and outputs the resulting one-dimensional real
array, as shown above.

Chapter 9 299

Math Operations
Understanding Data Containers

If you are interested in the specific container that has been passed on any
VEE dataline, you can use Line Probe tolook at that information. Move
the mouse pointer over the desired line so the line is highlighted and click
the left mouse button. The Line value box appears. For example, the
container passed on the data output line from the Real64 constant object of
our example appears as shown in Figure 9-2.

—| Realfd | —| AlphaNumeric | «|

o0ooa: 1.1 - 0:241

00z 321 - Eees
0003 2.11 YT arel——azan

ooo4:1.03 r—l_
Timamnl Tl 3311

Container Infarmation

Type: Realfd | 011
Sh ,W 1:1.54
dape:; Fra
i - Data: |4 3.21

SEE (5] 3o
Mappings: | Mane 41.03

Figure 9-2. Left-Click a Line to View Its Data Container

In general, VEE converts data types automatically and resolves data shapes
if possible. You normally do not need to worry about how thisis done.
However, for technical information about the conversion process

see “Data Type Conversions’ on page 302.

Terminals I nformation

Terminals show the object input type and shape requirements and display
information about the input or output container. Pins are the connection
points for terminals. You can display terminalsif they are present but not
visible on the object menu. Click properties and, onthe General tab,
check show Terminals.

300 Chapter9

Math Operations
Understanding Data Containers

To view or modify the attributes of aterminal, double-click the terminal’s
information area (not the pin). You'll see adialog box showing terminal
information.

If al the fieldsin the dialog box are grayed out, the terminal cannot be
modified. However, if some of them are entry fields (white backgrounds) or
buttons, you can change the values.

Terminals have the following characteristics:

B Name iSthe name of terminal. You can usually modify thisfield. In
formula expressions the terminal name can be used in the expression.

B Mode displaystheterminal type, such asbata, Control, Trigger, Of
Error. You cannot modify thisfield.

B Required Type and Required Shape (input terminals only) specify
information about the input data that the object expects. On some objects,
you can modify the Required Type Or Shape, but you normally will
not need to do this.

B Container Information containsinformation about the container
that the object will process (according to the input requirements on an
input terminal) or has processed (on an output terminal). This
information includes the data type, data shape, the size (if dataisan
array), any mappings, and the data itself.

Chapter 9 301

Note

Note

Data Type
Descriptions

Math Operations
Data Type Conversions

Data Type Conversions

Conventional programming languages typically require manual conversion
between data types. VEE automatically converts most data types on the
input terminals of objects and when using built-in type-conversion functions
and objects.

Data shapes are not converted on input terminals, but data types and shapes
may be converted automatically when used in math functions. See
“Processing Data’ on page 312. The conversion of data types for instrument
1/0 transactions is a special case. See “Instrument |/O Data Type
Conversions’ on page 310 for more information.

VEE Data Types

VEE provides 15 data types. For more information on data types and data
type conversions, see “ Data Type Conversions’ on page 302. For more
information on V EE support of ActiveX Automation and Controls, see
Chapter 13, “Using ActiveX Automation Objects and Controls’.

If an input terminal on a VEE object specifies any (the default in many
cases), it will accept containers of any VEE data type. Composite data types
(Waveform, Spectrum, Record, Coord and Object) are associated with
particular data shapes.

The data types shown in Table 9-1 are used for al VEE operations. That is,
every VEE data container sent between VEE objectsis one of these types.

302 Chapter9

Math Operations
Data Type Conversions

Table 9-1. VEE Data Types

Type

Description

Complex

A rectangular or Cartesian complex number. Each complex
number has areal and animaginary component in the form
(real, imag) . Each component isreale64. For example,
the complex number 1 +21i isrepresented as (1, 2).

Coord

A composite data type that contains at least two
components in the form (x, y, ...). Each component is
Realé64. The data shape of a Coord must be a Scalar or an
Array 1D.

Enum

A text string that has an associated integer value. The
Enum data type is propagated by the objects found under
Data = Selection Control (for example, the Radio
Buttons object).

You can access the integer value with these objects’
ordinal output pin or by using the ordinal (x) function.
The data shape of an Enum must be Scalar. Enum cannot
be a required data input type.

UInt8

An 8-bit two’s complement unsigned integer (0 to 255).

Intle

16-bit two's complement integer (-32768 to 32767).

Int32

32-bit two's complement integer (-2147483648 to
2147483647).

Object

A datatype reserved for variables used for ActiveX
Automation Objects and Controls when using VEE 5 or
higher Execution Modes. objects can be passed as inputs
to and outputs from UserObjects and UserFunctions, but
not to remote UserFunctions nor compiled functions.

An Object variable contains values for the name of the
Dispatch interface such as“Range” or “Application” and
the pointer value of Dispatch which are exported from an
Automation Object. object data shape must be Scalar.

Chapter 9

303

Math Operations
Data Type Conversions

Table 9-1. VEE Data Types

Type

Description

PComplex

A magnitude and a phase component in the form (mag,
@phase) . Phaseisin the currently active trigonometric
units. For example, the PComplex number 4 at 30
degrees isrepresented as (4, @30) when Trig Mode
is set to Degrees. Each component iSrRealé4.

Real32

32-bit Real that conforms to the IEEE 754 standard
(approximately 8 significant decimal digits:
+3.40282347E+38).

Realé64

64-bit Real that conforms to the IEEE 754 standard
(approximately 16 significant decimal digits:
+1.7976931348623157E308).

Record

a data type composed of fields. Each field has a name and
a container which can be of any type (including Record)
and a data shape of Scalar or 1D Array.

Spectrum

A composite data type of frequency domain values that
contains the PComplex values of points and the minimum
and maximum frequency values. Spectrum allows the
domain data to be uniformly mapped as log or linear. The
data shape of a Spectrum must be an Array 1D.

Text

A string of alphanumeric characters.

Variant

The Variant datatypeis not “fixed” as a specific kind of
data. It can be one of the other data types as needed. Used
for ActiveX automation methods that use ByRef Variant
parameters.

Waveform

A composite data type of time domain values that contains
the Realé64 values of evenly-spaced, linearly-mapped
points and the total time span of the waveform. The data
shape of a Waveform must be an Array 1D (a one-
dimensional array).

Line Colors for Data InvEE 4 or higher Execution Modes, VEE assigns different colors to the
Types datalines based on the type of data flowing through the line. Here are the

304

Chapter9

Note

VEE Data Shapes

Math Operations
Data Type Conversions

default colors along with the names of the color properties (changeable via
File = Default Preferences):

B Blue: numeric (Integer or Real type)

B Blue: complex (Complex and PComplex type)

B Orange: string (String type)

B Gray: sequence out (nil value, usually from a sequence out line)

B Black: unknown type or type that is not optimized (for example, Record
types).

If the datatypeis an array, VEE displays awider line. To increase speed,
check your program for colored lines. The more non-black lines, the faster
the program runs.

Composite data types (Waveform, Spectrum, Record, Coord, Enum, and
Object) are associated with particular data shapes:

B The Waveform and Spectrum data types are always one-dimensional
arrays.

B The Record and Coord data types can be either scalars or one-
dimensional arrays. (They cannot be arrays of two or more dimensions.)

B The Object and Enum data types are aways a scalar.

All other datatypes may have either a Scalar or an Array data shape:

B scalarisasinglenumber suchas1o or (32, @10).
B Array isan array with oneto ten dimensions.

Arrays may be mapped. (A mapping isaset of continuous or discrete values
that express the independent variables for an array.)

In many cases, aVEE object has data pins with an input data shape
requirement of Any, meaning that the object accepts containers of more than
one of the data shapes.

Chapter 9 305

Converting Data
Types on Input
Terminals

Math Operations
Data Type Conversions

Converting Data Types

This section shows how to convert datatypes on input terminals, how to
convert data types with objects and functions, and instrument 1/O data type
conversions.

Most objects accept any datatype on their data input terminals, but a few
objects require a particular datatype or shape. For these objects, the data
input terminal automatically attemptsto convert the input container to the
desired data type.

For example, aMagnitude Spectrum display needs Spectrum data. If the
output of aFunction Generator (aWaveform) isconnected to the
Magnitude Spectrum display, theinput termina of the Magnitude
Spectrum automatically does an FFT to convert time-domain datato
frequency-domain data (Waveform to a Spectrum).

The type conversion can be a promotion or demotion. A promotion is the
conversion from a data type with less information to one with more. For
example, aconversion from an I1nt32 to Realé64 isapromotion. Such
promotions take place automatically as needed.

A demotion is a conversion that may lose part of the data. For example, the
conversion from arealé4 to an Int32 isademotion because the fractional
part of the Real number islost. A demotion of data type occurs only if you
force it by specifying a certain data type for an input on an object.

Once you have specified a data type, the demotion will occur automatically
if itisneeded and is possible.

For example, if you change the required type or input on a Formula object
to 1nt32 and another object supplies areale4 number to that input (such
as 28.2), thevalue will be demoted to an Int 32 (28). To change the data
type on the Formula input from any to 1nt32, double-click the input
terminal’s information area (not the pin) and then click theRequired Type
fidd. Click 1nt32 in the drop-down list to change types.

VEE attempts to convert the data the next time the program runs. If the
supplied datais atype that cannot be converted to the datatype you select on
the input, VEE returns an error.

306 Chapter9

Converting Data
Types with Objects
and Functions

Note

Math Operations
Data Type Conversions

VEE provides objects and built-in functions that convert data from one type
to another. These are available to handle special type conversions that VEE
cannot handle on itsinput terminals.

The type conversion functions built into VEE can be added to a program by
using the Function & Object Browser, Or by entering the function
name into any object that accepts expressions. In the Browser, select
Type: Built-in Functions and Category: Type Conversion for
the available functions.

As an example, the function asText (x) convertsthe input x to the data
type Text and returns the same data shape as x. x can be any shape and any
type. In the expression asText (3.4), theresult isthe Text value "3 . 4".

Prior to VEE 5.0, an Integer was converted to a Real when it was entered
directly into expressionsin an object such as Formula. In VEE 5.0 and later,
an Integer in an expression is no longer converted to a Real when the
Execution Modeisset to VEE 5 or higher. This change does not affect data
type conversions on input terminals. For example, the Formula expression
“274" will producethe reale4 vaue 16.0 in VEE 4 and prior modes, but
the 1nt32 value 16 in VEE 5 and higher modes.

The Record data type has the highest priority. However, VEE does not
automatically promote to or demote from the Record data type. To convert
between Record and non-Record data, use the objects Build Record and
Unbuild Record.

Similar results are possible in expressions using syntax described in “ Using
Records in Expressions’ on page 316. For more information about Records,
see Chapter 11, “Using Records and DataSets”.

The Coord data type has some special rules associated with it:

B Although arraysof 1nt32 and Real datatypes can be promoted to Coord,
a Coord cannot be converted to any other numeric type.

B When unmapped arrays are converted to Coord, the independent Coord
values (the first Coord fields) are created from the array indexes while
the dependent Coord value (the last Coord field) contains the element
value. For example, if array a is converted to a Coord and A contains

Chapter 9 307

Automatic Data
Type Conversions

Math Operations
Data Type Conversions

[1,5,7],itisconvertedtoaCoordarray with [(0,1), (1,5), (2,7)]
init.

B \When mapped arrays are converted to Coord, the independent Coord
parameter ranges from the low value of the mapping to the value
Xmin+ (Xmax-Xmin/N) * (N-1).

The Object datatype also has no automatic promotion or demotion and it
cannot be converted to other data types. ActiveX automation objects use the
Object datatype. You can create and use automation objects by using the
functions createObject and GetObject. For more information about
VEE support for ActiveX Automation and Controls, see Chapter 13, “Using
ActiveX Automation Objects and Controls’.

Table 9-2 shows the data type conversions that can occur automatically on
input terminals and by using functions and which conversions cause an error.
A “yes’ meansVEE can do the conversion, whilea*“no” means VEE returns
an error. Demotions are indicated by the shaded areas.

The new “Variant” datatypeisnot adistinct datatype. Itisusedin
expressions to indicate that the value it represents can be one of a number of
other datatypes. It isthe datatypeit holds at the moment. Any datatype can
promote or demote to a Variant, and a Variant can promote or demote
according to the data it holds and the rules that data would follow. It does not
appear in Table 9-2.

308 Chapter9

Table 9-2. Promotion and Demotion of Data Types

Math Operations
Data Type Conversions

o] <] g
To = x 0 H)
N < (V] ~ (0]]
218 18 13 |5 |2 |8 /% |3 |% |g|¢
™ — —
VFrom | 3 | 3 B o o § 0 > 0 0 3 | %
H o A Q Q o} O] ol 0 o [J)
=] H H X =4] (a1 = 9] O 2] B
UInt8 nfa | yes yes yes no® no no no no no no no
Intl6é yes n/a yes yes yes | yes? | yes? no no yes3 | no | yes
Int32 yes | yes n/al yes yes | yes? | yes? no no yes3 | no | yes
Real32 yes | yes | yes* n/a yes | yes? | yes? no no yes3 | no | yes
Real64 yes | yes yes yes na | yes? | yes? no no yes® | no | yes
Complex no no no no® no® n/a yes no no no no | yes
PComplex no no no no® no® yes n/a no no no no | yes
Waveform no | yes* | yes* | yes® | no® no no n/a yes’ yes no | yes
Spectrum no no no no no® | yes® | yes® | yes’ n/a no no | yes
Coord no no no no no® no no no no n/a no | yes
Enum no no8 no8 no no® no no no no no nfa | yes
Text no | yes? | yes? | yes? | yes? | yes? | yes? no no yes? | no n/a

1. n/a= Not applicable.
2. AnInt32, or Real value promotes to Complex (value, 0) or to PComplex (value, @0).

3. Theindependent component(s), which are the first n-1 field(s) of an n-field Coord, are the

array indexes of the value unless the array is mapped. If the array is mapped, the independent
component(s) are derived from the mappings of each dimension. The dependent component, y,

isthe array element. If the container is a Scalar (non-array), conversion fails with an error.

»

These demotions will cause an error if the value is out of range for the destination type.

5. This demotion is not done automatically, but can be done with the re(x), im(x), mag(x) and
phase(x) objectsor theData = Build Data/UnBuild Data = objects.

6. These demotions keep the Waveform and Spectrum mappings.
An FFT or inverse FFT isautomatically done.

~

8. Thisdemotion is not done automatically, but can be done with the ordinal (x) object.

Chapter 9

309

Math Operations
Data Type Conversions

. This demotion causes an error if the text value is not a number (such as 34 or 42.6) orisnotin
an acceptable numerical format. The acceptable formats are as follows (spaces, except within
each number, are ignored):
* Text that is demoted to an Int32 or Real type may also include:
- A preceding sign. For example, -34.
- A suffix of e or E followed by an optional sign or space and an integer. For example, 42.6E-
3.
* Text demoted to Complex must be in the following format: (number, number).
* Text demoted to PComplex must be in the following format: (number, @number). The phase
(the second component) is considered to be radians for this conversion, regardless of the
Trig Mode Setting.

* Text demoted to a Coord type must be in the following format: (number, number, ...).

Instrument I/0O Data On instrument I/O transactions involving integers, VEE performs automatic

Type Conversions

datatype conversionsin VEE 5 and earlier Execution Modes. See “Using
VEE Execution Modes’ on page 17 for an example of how this could change
program behavior. V EE performs automatic data type conversionsin the
following ways:

B On aRreaD transaction in VEE 5 and earlier Execution Modes, Int16 or
Byte valuesfrom an instrument are converted to 1nt 32 values,
preserving the sign extension. Also, Real32 values from an instrument
are converted to 64-bit Real numbers. Vee 6 Execution Mode produces
true Intise, Int32, and Byte (UInts) values.

B On awRrRITE transaction in Vee 5 and earlier Execution Modes, Int32 or
Real values are converted to the appropriate output format for the
instrument, as described in the following bullets. VEE 6 Execution Mode
writestrue Int16, Int32, and Byte (UInts) values.

O If an instrument supports the Rea132 format, VEE converts 64-bit
Real valuesto Real32 values, which are output to the instrument. If
the Real valueisoutside of the range for Real32 values, an error
occurs.

Q If aninstrument supports the 1nt 16 format, VEE truncates Int 32
valuesto Tnt16 values, which are output to the instrument. Real
values arefirst converted to I1nt 32 values, which are then truncated
in VEE 5 Execution Mode and output. VEE 6 Execution Mode
outputs the number without truncating it. If a Real valueisoutside
the range for an Int 32, an error occurs.

310 Chapter9

Math Operations
Data Type Conversions

O If an instrument supports the Byte format, VEE 5 Execution Mode
truncates 1nt 32 valuesto Byte values, which are output to the
instrument. Real values are first converted to Tnt 32 values, which
are then truncated in VEE 5 Execution Mode and output. VEE 6
Execution M ode outputs the number without truncating it. If areal
value is outside the range for an Int 32, an error occurs.

Chapter 9 311

Math Operations
Processing Data

Processing Data

To process data, you operate on it with the operators and functions available
inthe Function & Object Browser. Usethe Function & Object
Browser toolbar button to open the browser. You can combine the functions
to create mathematical expressions.

The Function & Object Browser

The Function & Object Browser containsaset of mathematical
functionsto process your datain numerous ways. Each of these functionsare
expressions entered in a Formula object with the corresponding title, inputs
and outputs. You can change the expressions in the open view of each
Formula object and change their properties also.

All thefunctionsthat arelisted in Function & Object Browser canbe
used in any object in other menus that alows expressions. The objectsin
other menus that allow expressions are:

Data = Access Array = Set Values
Data = Access Array = Get Values
Data = Access Record = Get Field
Data = Access Record = Set Field
Device = Sequencer

Flow = If/Then/Else

Flow = Conditional (al conditional objects)
1/0 objects that use transactions

General Concepts

You can process data before running a program by using numeric entry
fields such asthose in constant objects. Numeric entry fields on some
objects support the use of arbitrary formulas. The formulaisimmediately
evaluated and the resulting value is used for the field. You cannot use
variablesin constants.

Thetyped-in formula must eval uate to a scalar value of the proper type or of
atype that can be converted to that which the object expects. In general, you

312 Chapter9

Expressions and
Functions

Note

Math Operations
Processing Data

can use any of the dyadic operators, parentheses for nesting, function calls
and the predefined numeric constant P1 (3.1416...) in numeric entry fields.

Expressions may contain the names of datainput terminals, data output
terminals (1 /0 transactionsand Formulas only), variables (declared, of any
scope, and undeclared), user-defined functions (compiled, remote and
UserFunctions), and any mathematical expression from the Function &
Object Browser. Datainput terminal names are used as variables.

VEE is not case-sensitive about names of input variables within expressions
for USASCII keyboards. For non-USASCII keyboards, VEE is case-
insensitive for 7-bit ASCII characters only. Expressions are evaluated at run
time.

If you pass an array to afunction, the function operates on each element of
the array, unless stated otherwise. For example, sqrt of ascalar returns a
scalar; sqrt (4) returns2. But sgrt of an array returnsan array of the same
Size; sqrt ([1,4,9,64]) returnsthearray [1,2,3,8].

InvEE 5 or higher Execution Modes, all numbers entered as integersin an
expression field are considered to be Int32. INVEE 3 and VEE 4
Execution Modes, all such numbers are considered Real64 values, unless
you use parentheses to specify Complex or PComplex values. Therefore,

2 isconsidered to be a Real number or an Int32, depending on the
Execution Mode. (1, @2) isaPComplex number, while (1, 2) isa
rectangular Complex number.

VEE interprets any value contained within parentheses as a Complex or
PComplex value. If you need to use a Coord value in an expression, use the
coord (x, y) function. The coord function takes two or more parameters.
coord (1, 2) returnsa Scalar Coord container with two fields.

All functions that operate on Coord data operate only on the dependent (last)
field of each Coord. For example, abs (coord (-1, -2, -3)) returnsthe
Coord (-1, -2, 3).

An Enum container is always converted to Text before every math operation
except the function ordinal (x) . Enum arrays are not supported. If you try
to create an Enum array, a Text array is created instead.

Chapter 9 313

Using Strings in
Expressions

Using Variables in

Expressions

Math Operations
Processing Data

For information on specific data type definitions, see “VEE Data Types’ on
page 302.

Strings within expressions must be surrounded by double quotes. You may
use the escape sequences in Table 9-3 within strings:

Table 9-3. Escape Sequences Characters

Escape Meaning
Character
\n Newline
\t Horizontal Tab
\v Vertical Tab
\b Backspace
\r Carriage Return
\f Form Feed
\ Double Quote
\ Single Quote
\\ Backslash
\ddd Character Value. d is an octal digit.

You can create and set variables by using theDeclare variable and Set
Variable objects, and you can access variables by using the Get
Variable object. SeeDeclare Variable, Set Variable, and Get
Variable in VEE Online Help for more information.

In addition, you can access avariable by including its namein a
mathematical expression. You can include a variable in a mathematical
expression in a Formula object, or in any object with adelayed-evaluation
expression field.

These objectsinclude 1f/Then/Else, Get Values, Get Field, Set
Field and dl instruments using expressions in transactions, including To

314 Chapter9

Note

Math Operations
Processing Data

File, From File, From DataSet, From Stdin, To/From Named
Pipes, To/From Socket, Sequencer, and Direct I/0.

To include avariablein an expression, just use the variable name as if it
were an input variable. For example, suppose a program uses a Set
Variable object to define the variable numFiles. Elsewherein the
program, a Formula object with input 2 may use the expression
numFiles+3*A.

Variable names are case-insensitive. Either upper-case or lower-case letters
may be used. Thus, GLOBALA isequivalent to globalA.

To avoid errors or unexpected results, be aware of two limitations when you
include variables in an expression:;

1. Local input variables have higher precedence than global variables. This
means that in case of duplicate variable names, the local variableis
chosen over the global variable. For example, if the expression Freg*10
isincluded in aFormula object that hasa Freq input (aloca variable)
and thereis also a global variable named Freq, the expression will be
evaluated with the local variable Freq, not the globa one. No error will
be reported regarding this duplication.

2. Depending on the flow of your program, an object that evaluates an
expression containing a variable may execute before the variableis
defined. For example, suppose the variable globala isset with aset
variable object and the expression globala*x*2 isincludedin a
Formula object.

Depending on the flow of your program, the Formula object may
execute beforethe set variable object executes. In this case, the
Formula object won't be able to evaluate the expression because
globala isundefined. An error message will appear.

It isimportant that you take stepsto ensure correct propagation — that
Set Variable executesfirst. You can do this by connecting the
seguence output pin of the set variable object to the sequence input
pin of the Formula object, in this case, or of any other object that
includes the variable in an expression to be evaluated.

Chapter 9 315

Note

Using Records in
Expressions

Math Operations
Processing Data

If acet variable objectisused, its sequence input pin should also be
connected to the sequence output pin of set variable. Also, if you
declareavariable using the beclare variable object, you must
initilizeit using set variable. For moreinformation, see

Chapter 10, “Variables’.

By default, Delete Variables at PreRunintheDefault
pPreferences dialog box is checked (enabled) so values are deleted from
variables when you run a program. This prevents variables from containing
“old” data and causing unexpected results.

Variables can be arrays. Just access a variable array as if it were an input
variable using array syntax, for example: Globary[2]. If avariableisa
Record, use the record access syntax, such as globRecord.numFiles.

You can use expressions to access a field or sub-field of arecord. Use the
a.B sub-field syntax to access the B field of arecord a. If & isarecord with
afield B, whichitself isarecord which hasafied ¢, you may usethea.B
syntax recursively to accessthe c field. That is, usethe expressiona.B. C. If
A does not have a B field, or B does not have a c field, an error will result.

Thereisno limit on the number of recursionsof o.B.c.D.E. F that may be
used in expressions. Field names are not case-sensitive (lowercase and
uppercase letters are equivalent). Field names may be duplicated in sub-
Records, so you may use the expression a. a . A.

Records are very useful as variables so one variable may hold severa
different values. A Formula object can be used in place of aGet
Variable. Thus, you can accomplish the GlobRec.numFiles accessin
one object, instead of using both aGet variable and a Formula object to
unbuild the record.

The record and array syntax may be combined in expressions to access a
field of arecord array (for examplea[1] .B), or to access a portion of an
array that isafield of arecord (for example, 2.8 [11). Note the difference
betweena[1] .banda.b[1] (both are supported):

316 Chapter9

Note

Using Assignment
Operations

Note

Math Operations
Processing Data

U You would usethefirst for arecord 1D with ascalar fieldb. A[1] .b
accesses the field b of the second record element of the record array A.

O You would use the second for ascalar record with afield b, whichisa
1D array. A.b [1] accesses the second element of the field b of the
record 2.

To change afield in arecord, use the assignment operator in a Formula
object. For example, suppose you have arecord r with afield a and you
wishto changethevalueof R.Atobesin (R.A). Just change the expression
torR.A = sin(R.A). You can continue to use the record r (with the new
valuefor field a) later in your VEE program.

For information about using Objects in expressions to manipulate ActiveX
automation objects and controls, see Chapter 13, “Using ActiveX
Automation Objects and Controls’.

The Formula object allows expressions that use assignment operations to
change valuesin parts of arrays and records and assign values to local and
global variables. The Result output termina contains that part of the array
or record that changed, not the entire array or record.

For example, in aFormula with the expresson A[2] = 4 theResult
terminal contains array element A [2] with avalue of 4. It does not contain
al of array A. Formula objects preset with assignments are available in the
Function & Object Browser iNType: Operators, Category:
Assignment.

Assignment operations are allowed only in Formula objects.

For information about using assignment operations to manipulate Activex
automation objects and controls, see Chapter 13, “Using ActiveX
Automation Objects and Controls’.

Allowed Syntax. Multiple expressions, separated by semi-colons, are
allowed in Formulas. The left-hand side of expressions allow syntax that
change the values for array and record elements and for variables. The right-

Chapter 9 317

Math Operations
Processing Data

hand side must match exactly the part of the left-hand side that is being
modified. For records, the schema (afield's type, shape, or size) cannot be
changed, only its values.

The following examples show left-hand syntax that work for arrays:

Al2]=
A2, 3, 4:5]
Al2:4, 4:6,

w

sk, *]=

The following examples show left-hand syntax that work for records:

RecA.B=

RecA.B.C.D=

RecA[1l] .B=
RecA.B[1l]=
RecA.B.C.D[1]=
RecA[1] .B[2].C[3].D=
RecA.B[2:3].C[3:4]=

The following left-hand syntax is allowed to directly set global and local
variables and initialize declared local variables:

GLOBAL=2
TMP_LOCAL=4

Examples. Here are examples of assignments showing how the right-hand
side must match the part of the left-hand side that is being modified. The
datatype of the right-hand side must be coercible to the data type of the | eft-
hand side, such as Integer to Real or Real to String. A coercion such as
Complex to Real cannot be done.

B ArrayA[2:4] = ArrayB
(arrayB must be a one-dimensional array with three elements.)

B ArrayA[2, 3, 4:5, 7, 8:9] = ArrayB
(arrayB must be atwo-dimensional array, of size2 by 2.)

B Rec([3:4].field = ArrayB
(arrayB must be a one-dimensional array with two elements.)

M Rec[3:4] .field[4:5] = ArrayB
(arrayB must be atwo-dimensional array, of size2 by 2.)

318 Chapter9

Note

Error Recovery

Note

Math Operations
Processing Data

Non-explicit use of arrays of records on the left-hand side of assignmentsis
not allowed. If Rec isan array of records, the expression Rec . a=2 will
cause an error, prompting arequest that you use the full explicit syntax,
Rec [*] .A=2. A similar error resultswith Rec.B=2 if Rec isascalar record
and B isan array. The resulting prompt will request that you use the explicit
Rec.B[*]=2.

InVEE 4.0 and later versions, the set values and Set Field objectsare
actually Formula objects with assignment expressions. These objects have
been changed from their definitionsin prior versions of VEE. Existing
programs written with VEE 3.x and older that usethe set values and set
Field objectswill retain the prior definition if they continue to run in the
VEE 3 Execution Mode.

SinceaFormula can contain aseries of expressions, including assignments
and other operations, errors are handled in certain ways. If an assignment or
other operation is done and a following expression errors, previous
expressions are not undone.

Consider the expressions, Global [2]=24; 2/0, inaFormula.

First, Global[2] issetto24. Then, thedivision by zero causesan
error. VEE will not set Global [2] back to its previous value.

For procedures about using assignment operations, see VEE Help

(Help = Contents). IntheHow Do T ... section, openthework with
Data section, then look at the topics under working with Arrays (Such
8STo Change Values in an Array)and at topicsunder Working
with Variables.

Using Global and L ocal Variables

Assignments in Formula objects can change valuesin global and local
variables with expressions such asA=2 or GlobalAa [5] =2. Since variables
can be undeclared globals, declared globals or locals, or directly-set locals,
the Formula object will look for the variable A using the following order of
precedence;

Chapter 9 319

Global and Local
Variables in
Assignments

Note

Math Operations
Processing Data

1. A locd variable which isaninput terminal. This overwrites the input
terminal value, including its type and shape.

2. Alocal variable which is an output terminal. Thisvariableis created and
placed on the output terminal.

3. A global variable. Thevariable must already exist. Itsvalueis completely
changed, including its type and shape.

Given theserules, an error resultsif Formula contains an assignment such
as tmp=2 Where tmp does not meet one of these criteria.

Assigning values to global arrays and records requires added attention since
these variables may be undeclared or declared. A global existswhenitis
created using an object suchas set variable, or whenit isdeclared using
Declare Variable.

An undeclared global’s type and shape can be changed by an assignment
expression. However, for adeclared global the right-hand side of the
assignment must be coercible to the global’s declared type.

Very Important! When you declare a global array or record variable using
thepeclare Variable object, the entire variable must be initialized
collectively before you can change part of the global. The program in
Figure 9-3 showsthe variable G1lobalary declared and initialized before an
individual part is changed by the assignment in Formula.

320 Chapter9

Data Container
Contents on
Terminals

Math Operations
Processing Data

—| Declare Globaldry | 4|

Marme: GlobalAry

Scope: lm
Type: [iz =]
MumDims: [1 7]

0000: 9 —| setGlobalay | <
0001 8
nooz: 7 —1
0003 6 1 [Globalary
D004: 5 -
n00s: 4 -
= Farmula =] —[Alphatiume. .| <

GlobalAni] =1 Result -——1 1

Figure 9-3. Initializing a Declared Global Variable

Formula object input and output terminals affect how the values for
variables are changed by assignments. The data container on the Result
output terminal contains the modified part of an assignment expression’s
left-hand side, including any changes to the data type and shape.

In aFormula With the expression Arraya[2:4] = ArrayBI[5:61,the
Result output terminal contains Arraya [2:4] with the values from
ArrayB[5:6].lnanexpression such asArraya[2] =4, wherethe Arraya
datatypeis Complex, the valuefor arraya[2] inthe output terminal is
converted to Complex (4, 0).

The following output terminal names can be used:

B Result. Thisisthe default output terminal on Formula. It isareserved
name and contains the result of an assignment expression. You can delete
Result to use other outputs, then add it back if needed, but you cannot
rename an output terminal Result.

Chapter 9 321

Dyadic Operators
Categories

Math Operations
Processing Data

B Aninput termina name. Thisvalue is copied from theinput. If changed
in an assignment, the new value is used on the output. The variable must
exist and have avaue before it can be used as an input terminal name.

B A locd variable name. Thisisaname, such as Tmp, that is created by an
assignment expression, such as tmp=2.

You can use additional output pinson a Formula to get various parts of a
modified array or record out of the object. This lets you pass the modified
part of avariable out one termina and the whole variable out another
terminal. To get the whole array or record on the output terminal, use a
global variable in an assignment expression or add an output terminal to the
Formula object for the array or record. If an output terminal existsthat does
not get a value assigned, an error occurs.

Mappings on arrays are ignored unless the entire container is modified. For
example, ArrayA[2:4] = ArrayB[2:4] doesnot modify the mappings
onArrayA. Buta = ArrayB[2:4] will set the mappingson a sinceitis
replaced by ArrayB.

Using Dyadic Operators

The set of dyadic operators have several additional conditions and
guidelines. The dyadic operators are visible in the following categories of
the Function & Object Browser in Type: Operators.

W Category: Arithmetic
+ b

>N x|
o o o

b (exponentiation)

mod b (modulo - returns remainder of division)
div b (integer division - no remainder)
ategory: Comparison

~= b

Q0 9 9 9 9 W

OUUDDUO0OUD

=b
= b
b

Co00
0o W

N

322 Chapter9

Precedence of
Dyadic Operators

Dyadic Operators
Data Type
Conversion

Note

Math Operations
Processing Data

Qas>bhb

da<=1D

da >=D

B Category: Logical

U a AND b

UaorRb

U a XOR b

U noT a (amonadic that follows the same guidelines as dyadics)

When using dyadic operators on arrays, the array size, array shape, and array
mappings (if they exist) must match. For Coords, the values of the
independent variable for each Coord must match.

Thislist isthe order of precedence of the dyadic operators. They are listed
from highest to lowest, with operators of the same precedence listed on the
same level.

parentheses (and) used to group expressions
unary minus -

* / MOD DIV

+ -

CoN>UT~WNPE

For the dyadic operators, the input values are promoted to the highest data
type, then the operation is performed. The data type of the output isthe
highest input data type. For example, when the complex number (2, 3) is
added to the String "Dog ™", "Dog" + (2, 3), the result isthe String "Dog (2,
3) .

There is one exception to this rule. When you multiply a Text string by an
Int32, theresult is arepeated string. For example, "Hello"*3 returns
HelloHelloHello. No datatype promotion occursin this case.

Chapter 9 323

Dyadic Operators
Considerations

Math Operations
Processing Data

The datatype order (from highest to lowest) is.

Object

Record

Text (Enum istreated as Text)
Spectrum

PComplex

Complex

Coord (no conversion to any other numeric type possible)
Waveform

. Red64

10.Real 32

11.1nt32

12.1nt16

13.UInt8

14.Variant

CoN>Uk~WNE

The Variant datatypeis not “fixed” as a specific kind of data. It can be one

of the other datatypes as needed. In the function sin(var), datain the Variant
datatype (var) could be an integer, areal, or awaveform, depending on the

valueit isassigned to. In the expression a=sin(var), awill have the datatype
of whatever data (var) contained.

Object Considerations. Objects will not automatically demote to other
types. No dyadic operations are supported on Objects themselves, but since
most Objects have a default property which isa String or Integer value, most
operations can be performed on Objects.

The difference isthat you end up performing the operation on the default
property. For more information about Objects and their use with ActiveX
automation in VEE, see Chapter 13, “Using ActiveX Automation Objects
and Controls’.

Record Considerations. Records have the highest precedence of all data
types, but other data types can be converted to the Record data type only by
using special objects such asBuild Record. Recordswill not
automatically demote to other types, nor will other types automatically
promote to the Record type. Objects and Variants cannot be Record fields.

324 Chapter9

Math Operations
Processing Data

The dyadic operators do support combining records and other data types, but
they will always return arecord in this case. A dyadic operation on a record
and non-record will apply the operation with the non-record to every field of
the record.

For example, consider arecord r with two fields 2, a scalar Real value (2.0)
and B, ascalar Complex value (3,30). The expression r+2 will produce a
record r with two fields 2, a scalar Real with value 4 and B, ascalar
Complex with value (5,30). If the operation cannot be performed on every
field in the record, an error occurs.

Dyadic operations on arecord and any other type will return arecord with
the same “schema”, so the resulting record will have the same fieldswith the
same names, types, and shapes. The dyadic operation may not change the
type or shape of arecord field.

For example, consider arecord r with two fields: A, ascalar Real and B, a
scalar Complex. The expression r+ (2, 3) will cause an error. VEE will first
trytoadd (2,3) tor.A, then do the samewithr.B.

The error occurs becausether . A field is a Real and the result of
R.A+(2,3) would be aComplex. The Complex cannot be demoted to a
Real to be stored back intor . 2.

Dyadic operations on records using arrays treat the record as having higher
precedence than the array. For example, [1,2,3]1 + [3,4,5] produces
[4,6,8],s0thearrays are combined piece by piece. But, records have
higher precedence than arrays. Thismeansthat if r is arecord with two
fields: A and B, theexpressionr + [1,2] will trytoaddthearray [1, 2]
to each field of R. It will notadd 1 tor.Aand 2 tOR.B.

Things get even more complicated when you combine arrays with record
arrays. For example, supposer isarecord 1D array, two long, with three
fields: a, B and c. Theexpressionr + [1,2,3], ortheexpressionr +
[1,2] will add the entire array to each field &, B and ¢ for every element of
R. Even though r is an array, the fact that it is arecord is more important.

A dyadic operation on two records will combine them field by field so the
two records must have the same “schema”. That is, each record must have
the same number of fields and each field must have the same name, type,
and shape, in the same order.

Chapter 9 325

Math Operations
Processing Data

If youwant to add 1 to field a, add 2 to field B, etc., the easiest way isto use
multiple assignments (see Assignment in VEE Help). InaFormula object,
enter the expression R.A=R.A+1,R.B=R.B+2. You can then user.a and
R.B with their new valuesin your program.

Spectrum Considerations. If you choose to use dB scaling, you must keep
track of it yourself. Although dB-scaled data displays correctly (except on
thewaveform (Time) display), many math functionssuch as fft (x),
ifft (x), and those involving PComplex numbers do not operate correctly
on dB-scaled data.

If you need to use these operations, convert the dB-scaled data to linear
scaling before operating on it. VEE supplies library programs for dB
conversionsin itsinstallation location, typicaly:

For Windows:

C:\Program Files\Agilent\VEE Pro 6.0\lib\convert
For UNIX:

/opt/veetest/lib/convert (HP-UX 10.20)

When you are using particular dB units, some math functions give
meaningful results, but only within the confines of those units. For example,
if you add 20 to adBW-scaled Spectrum, 20 is added to the magnitude of
each element (which has the same effect as converting the Spectrum to a
linear scale, multiplying each element by 100, and converting back to
dBW.).

Data Shape Consider ations. For dyadic operations where both operands
(inputs) are arrays, the size and shape of the arrays must match. The result of
the operation is an array with the same size and shape as the input arrays,
except for the relational operators (==, <, €tc.), which always return ascalar.
If arrays have a different number of dimensions or are of different sizes,
VEE returns an error. For example, [1,2] + [1,2,3] returnsan error.

If you are operating on ascalar and an array, the scalar istreated asif it were
aconstant array of the same size and shape as the array operand. For
example, 2 + [1,2,3] istreatedas [2,2,2] + [1,2,3].Theresultis
[3,4,5].

326 Chapter9

Math Operations
Processing Data

When an n-dimensional array is converted to a Coord, the Coord data shape
isan Array 1D with n+1 fieldsin each Coord element.

Variant Considerations. The result of dyadic (+-*/, etc.) evaluations and
functions cannot be a Variant.

B Intheexpression, “b=a’, “b” will bethe sametypeas“a’, evenif it wasa
Variant.

B |nthe expression, “b=at+2", “b” will never be a Variant, regardless of
what “a” is.

B |nthe expression, “b=sin(a)”, “b” will never be a Variant, regardless of
what “a’ was.

B Thefunction “func(2+a)” will always be sent a non-Variant, regardless of
what “a" was.

Just avariable name, “a’, a monadic operator, “-a’, or parentheses, (a), will
not change the data type of “a”.

B The function “func(a)” will be sent a Variant if “a’ isa Variant.

Chapter 9 327

Note

Comparison of Array
Operation
Techniques

Math Operations
Array Operations in VEE

Array Operationsin VEE

VEE is optimized for array math. While you can perform array operations
using traditional loop constructs, they tend to degrade program speed. This
section shows ways to use the Formula and other objects to perform math
operations on arrays. Assignment operators, discussed in “Using
Assignment Operations” on page 317, aso let you change vaues in parts
of arrays.

You can adapt the examples in this section and use assignment operators to
avoid using time-consuming computational loops. Since these techniques
are not always obvious, be careful about using them and be sure to document
your programs thoroughly.

Array Operations Techniques

This section shows some array operations techniques for VEE, including
comparison of array operation techniques, accessing arrays in expressions,
performing array math operations, and using variables in expressions.

The program segmentsin Figure 9-4 and Figure 9-5 compare techniques for
generating an array containing all the values of sine and cosine for each
degree from 0 to 360. If you try each of these techniques, you will find that
the first technique takes more time.

—| ForCount | « =| sinf) =
360 ® |5|n(}{) Result — P —

| I JCT - |
Collectar
= cost)) | -

% | [rosto | | Resultj——— Collector
| I

Figure 9-4. Generating an Array Using Individual Objects

328 Chapter9

Accessing Arrays in
Expressions

Note

Math Operations
Array Operations in VEE

Converting the logic contained in this series of objects to a mathematical
operation, resultsin the expression shown in the Formula object in Figure
9-5. This technique does the same calculationsin less time:

= Formula =

I[sin{ramp(BEEl, 0, 3590, cos{ramp(3E0, 0, 3593 Result ||

Figure 9-5. Generating an Array Using a Mathematical Expression

Though this technique is much faster, it is not obvious that it does the same
calculations. Here is an explanation of the expression’s operation:

1. Theramp () function generates an array of 360 values, increasing from 0
through 359.

2. Thetwo ramp functions generate identical arrays, each operated on by
thesin () and cos () trigonometry functions. Most VEE functions that
normally accept and return a scalar value can accept and return an array
as a parameter.

3. Though the Formula object actually containstwo formulas, their outputs
are converted to an array format because they are contained in the square
brackets.

This technique may not be the best choice for al programs. The sine and
cosine operations are done on the entire arrays produced by the ramp ()
functions, not on each value asit is generated. If your program must operate
on each value asit is generated, use aloop structure instead of an expression
that operates on the entire array.

Arraysin expressions can be used just like scalars. Refer to them by their
name. Array constants can be entered directly into an expression (such as
[1,2,31). VEE requires that you insert commas between array elements.

Array indices are 0-based. The indices start with zero and continue to n-1,
where n isthe number of elementsin that particular dimension.

Chapter 9 329

Note

Examples: Values
Returned from Array

Math Operations
Array Operations in VEE

You can use expressions to access portions of an array. Once you have
specified the sub-array in the expression, you can output the sub-array or use
it in further expression calculations.

You can access only contiguous sub-arrays from each array. To access sub-
arrays, you must specify a parameter for each dimension in the array. Use
the following characters to specify array parameters:

B A comma“,” separates array dimensions. Each sub-array operation must
have exactly one specification for each array dimension.

B A colon*“:" specifiesarange of elementsfrom one of the array
dimensions.

B Anasterisk “*” isawildcard to specify all elements from that particular
array dimension.

Waveform time spans, spectrum frequency spans, and array mappings are
adjusted according to the number of pointsin the sub-array. For example, if
you have a 256 point waveform (wr) and ask for wr [0:1271, you will get
thefirst half of the waveform and atime span that is half the old span.

The following expressions show values returned where 2 is a one-
dimensional array (Array 1D) ten elements long.

B A[1] accessesthe second element in A and outputs a scalar.

B A[0:5] returns aone-dimensional sub-array that contains the first six
elements of A.

B A[1:1] returnsaone-dimensional sub-array that contains one element,
which is the second element of a. Note the difference between this and
the first example, A[11].

B A[2:*] returns aone-dimensiona sub-array that contains the third
through the tenth elements of a.

B A orAl*] returnsthe entire array A.

330 Chapter9

Building Arrays in
Expressions

Math Operations
Array Operations in VEE

B A[1,2] returnsan error because it specifies parameters for atwo-
dimensional array.

B isabx5 matrix (an Array 2D).

B B [*] returnsan error because it specifies only one parameter and B isa
two-dimensional array.

B B[1,2] returnsascaar value from the second row, third element.
W B[1,*] returnsall of row oneasan Array 1D.

W B[1,1:*] returnsall of row one, except for the first element, asan
Array 1D.

W B[4,1:4] returnsan Array 1D that contains four elements: the second
through fifth values from row 4.

B B[5,5] returnsan error because arrays are zero-based. The array can
only be accessed through B[4, 4]1.

B B[1 1] returnsan error because a comma must separate the dimension
specifiers.

You can build an array from elements of other arrays or sub-arrays. Each
element in the expression must specify the same number of dimensions and
contain the same number of valuesin each dimension.

For example, the following expressions show values returned wherea isa
one-dimensional array (Array 1D) ten elementslong and B is a 5x5 matrix.

W [1,2,3] returnsathree-element Real Array 1D that contains the values
1,2, and 3.

B [A[0], A[5:7], A[9]] causesan error because both scalar and Array
1D elements are specified.

B [A[0:4], B[O, *]] returnsaten element Array 2D (of size 2 by 5) that
contains the first five e ements from a as the first row and the first row
from B as the second row.

Chapter 9 331

Performing Array
Math Operations

Array Functions
Operations

Math Operations
Array Operations in VEE

B [aA[o0], A[1], BI[2,3]1, AI[5]] returnsafour element Array 1D that
containsthefirst and second element of 2, the e ement from the third row
and fourth column of B and the sixth element of &.

Math operations on arrays uses another set of simple rules. Elementary
scalar arithmetic operations on arrays simply perform their operations on
each element in the array:

B A*2 multiplies each element in the array by 2.
B A-4 subtracts 4 from each element in the array.

B Arraysusedin functions, like sin([1,2,31), havethe sin function
applied to every element of the array.

Math operations between two arrays that have the same size and dimensions
perform the operation between corresponding elements of the arrays:

B A*B multiplies each element of the array A by the corresponding
element of array B. Thisdoes not perform a“matrix multiply”, whichisa
relatively complicated multiplication of rows times columns and
summation that resultsin ascaar. VEE has a built-in matrix function to
dothat, caled matMultiply (A, B).

Basic Array Operations

VEE hasavery flexible schemefor accessing and manipulating arrays. For a
review of extracting portions of an array and performing simple array math
operations see “Using Variables in Expressions’ on page 314 and
“Performing Array Math Operations’ on page 332.

Most elementary math functionsin VEE, suchaslog (), sin () and cos ()
can accept an array as a parameter and return an array. Some speciaized
functions are handy for performing array math and manipulations. Other
functions are not useful with arrays. Functions that are useful in array
operationsinclude:

B ramp () can be used to generate “loop” counts.
B concat () concatenates two arrays and returns a one-dimensional array.

332 Chapter9

Changing Values in
an Array

Math Operations
Array Operations in VEE

totSize () givestotal number of elementsin an array.
signof () detectsavalue'ssign (-1if <0,0if =0, 1if >0).
abs (x) setsthe absolute value.

rotate () rotates elementsin array.

sum () sumsal elementsin an array.

sort () sortsan array.

randomize () generatesarray of random numbers.
min () findsthe minimum value of adata set.

max () findsthe maximum value of adata set.
clipUpper () clipsbelow the maximum given value.
clipLower () clipsabove the minimum given value.

A useful feature in Formula objectsis the ability to define expressions as
arrays. Notice that you must insert commas between array elements. The
following expression generates an array containing the double, reciprocal,
sguare, and natural log of the input named B:

[2*B, 1/B, B*B, log(B)]

The following examples show how to manipul ate arrays using expressionsin
aFormula object. Just connect an object containing the array to the
Formula Object'sinput pin.

You can take an existing array and perform math cal culations on selected
€lements using an assignment expression. The example in Figure 9-6
changes the valuesin onerow of atwo-dimensional array. The expression in
the Formula object performsthistask on theinput array A=[1,2,3,4], where
row 0 contains 1 and 2 and row 1 contains 3 and 4.

The expression multiplies the elements in the second row by 4, then assigns
the resultsto array A. Notice that the Result terminal outputs only the
changed values and the A terminal outputs the entire array with the new
values.

Chapter 9 333

Splitting a Large
Array

Math Operations
Array Operations in VEE

—| Alphaklumetric |
=] Formula = [.
5 | 1= | Result e —| Alphahumeric | «
A : 0: 1:
—] 01 2
1:12 16
« | b|

Figure 9-6. Using an Assignment Expression to Change Array Values

You can display the elements of a single 2048-element array as 16 sets of
128 elements each. While the problem focuses on the display of the data,
rather than its generation, it may help to approach a solution that involves
breaking up the array.

The program in Figure 9-7 shows how to break up the array in order to
achieve the display goal.

—| rampi{numElem,start,stop) | .-|

Iramp(2048,0,204?) Result

= Formula =]
—|For Count| « A | e 2801 2817
— = IA : Result

Figure 9-7. Reorganizing Values in a Large Array Using an Expression

The ramp () function simply generates a 2048-element array with values
from 0 to 2047 for test purposes. The For Count object ticks off each of the
16 individual arrays to be generated, while the Formula box selects the
appropriate sub-array using indexes generated from the count:

A[0:127], A[128:255], A[256:384], ..., A[1920:2047]

Of course, this assumes afixed array size, number of subarrays and size of
subarrays. An error occurs if any of these are mismatched.

334 Chapter9

Combining Arrays

Multiplying a Vector
by a Matrix

Math Operations
Array Operations in VEE

The next example shows how to concatenate multidimensional arrays. The
concat (x,y) functionisuseful for thistask when used in a Formula
object, even though it can generate only aone-dimensional output. However,
it will work only if the number of rows or columnsisfixed (a constraint that
isusually met in practice). The Formula object in Figure 9-8 contains an
expression that concatenates apair of arrays that have two rows:

= Formula =)

1A | [concatiA0,#],B[0,*T, concatial1,*.B01,] RESUHI

(o

Figure 9-8. Combining Two Arrays Using an Expression

The concat () function concatenates two arrays and produces a one-
dimensional array. The expression strips out the rows of each of the arrays,
concatenates them and then joins them back together into atwo-dimensional
array with two rows containing the combined number of elementsin each
row.

The following exampl e shows how to multiply a vector
[X1, X2, X3, X4]
times a matrix

[[y11, y12, vy13, yi14 1,
[y21, y22, y23, y24 1,
[y51, y52, y53, y54 1]

to get the result

[[X1*yll, X2*yl2, X3+*yl3, X4*yl4 1,
[X1*y21, X2*y22, X3*y23, X4*y24 1,

[X1*y51, X2+%y52, X3*y53, X4*y54]]

VEE can multiply ascalar times a vector and can perform matrix

multiplication. A scalar multiplication multiplies every element in a matrix
by a scalar to give aresult matrix of the same size asthe original. A matrix
multiplication is an operation between an MxN matrix and an NxM matrix

Chapter 9 335

Inserting Elements
into an Array

Math Operations
Array Operations in VEE

that yields ascalar. The required operation for this example does not match
either case.

The operation here is effectively ascalar multiplication of each row of the
matrix by each element of the vector. The implementation uses array
manipulation techniques. Consider a data set consisting of a vector V of the
form

[1/ 2/ 3/ 4]

and amatrix M of the form

[[, 2, 3, 4, 5, 6, 7, 8 1,
[10, 20, 30, 40, 50, 60, 70, 80 1,
[100, 200, 300, 400, 500, 600, 700, 800 1,
[1000,2000, 3000, 4000, 5000, 6000, 7000, 8000]]

The desired result is

[[, 2, 3, 4, 5, 6, 7, 8 1,
[20, 40, 60, 80, 100, 120, 140, 160 1,
[300, 600, 900, 12K, 15K, 18K, 21K, 24K],
[4000,8000, 12K, 16K, 20K, 24K, 28K, 32k 1 |

The expression in the Formula object in Figure 9-9 does the multiplication.
The matrix array is connected to terminal M and the vector array is connected
to terminal v. Testsindicate that thisis only about 50% slower than a scalar

multiplication of the same array.

= Formula =

'ﬂ |[M[n.*]wm]. ME TV, MIZ TV METVET | pesut l
b

Figure 9-9. Multiplying a Vector Array by a Matrix Array

Figure 9-10 shows an expression that inserts one or more data elementsinto
an existing array. The inputs are

A isthe Index Value
B isthe New Data
c isthe Original Array

336 Chapter9

Math Operations
Array Operations in VEE

The revised array isoutput on Result.

_.| Farmula | -'|

A (A==07 cancat(B, C) : (A==totsize(C) ? concat(C, BY : concatiC[0:A-1], concatiB, clAtotsizedC)- 1100
B Result |

ienl

Figure 9-10. An Expression that Inserts Elements into an Existing Array

The Index Value on & indicates what the starting index of the new data
should be. If 2 is0 or less, the New Data on B is concatenated to the
beginning of the Original Array on cC.

If A isgreater than or equal to the length of the Original Array, the New Data
is concatenated to the end of the Original Array. If A issomevauein
between, the Original Array is broken into segments around the Index Vaue
and the New Datais spliced into it.

The examplein Figure 9-11 is similar to the previous one. It builds a data
gueue with array operations. A queue is essentially an array of fixed length,
where new elements are added at one end and numbers shift down to the
other end, where numbers fall off and are lost.

L
—| Formula =] L.
JCT
|ramp(1D, 0,0 | Result |

—| Formula: Queue =

O Iz Iconcat(OIdDataH:(totsize(OIdData)-1)], NewData) | | mesuit

MNewDat
On Cycle ewbata
Random Mumber

Figure 9-11. Using a Loop to Insert Elements into an Existing Array

The ramp () expression allocates an initial empty array of ten elementsto
act asaqueue. Theon cycle loop (cycleis set to 1 second) begins and
sends random numbers to the head of the queue every second. The
Formula: Queue takesthelast nine e ements of the 01dpata input and
concatenatesit with anew random number on the NewData input. The array
output on Result isfed back asthe next set of 01dpata and sent to the next
program segment. A new random number is sent to NewData on the next
cycle.

Chapter 9 337

Converting a Vector
to a Matrix

Math Operations
Array Operations in VEE

There are occasions when you can get the results you need by using
transaction objects in place of array functions. The example in Figure 9-12
usesaFrom String object to convert avector (one-dimensional array) into
amatrix (two-dimensional array). Run the vector through the From String
and specify the array format you like as an output as shown in the next
program. The conversion between Real and Text data typesis automatic in
VEE.

= Farmula =

rarnp(,0,8) Result j

— Fram String =

READ TEXT x REALEA ARRAY™ 3

= Diouhle-Click to Add Transaction =

AString

Figure 9-12. Converting a One-Dimension Array to Two Dimensions

For example, let us convert a one-dimensional 9-element array into a 3x3
two-dimensional array:

The vector output from the ramp () functionis
0,1,2,3,4,5,6,7,8

TheFrom String transaction convertsit to the row-ordered matrix

o W o

Ill
141
171

o Ul N

—

If you prefer a column-ordered matrix, usethe t ranspose () (transpose
matrix) function to get the following result

N P O

131
141
151

w0 J O

Another way to convert avector to amatrix iswith the Formula build array
syntax. You know that the syntax [1,2,3] generates a one-dimensional array
with three elements. Similarly, if a isaone-dimensiona array 10-long, the

338 Chapter9

Math Operations
Array Operations in VEE

syntax [a] generates a 1x10 two-dimensional array. Again transpose ()
can be used if you want a 10x1 matrix.

Advanced Array Operations

This section shows some advanced array operations, including those
involving comparisons on entire arrays of data.

Combining The program in Figure 9-13 shows the method required to take severa data
Disparate Elements setsfrom a device and get aresulting data set that consists of the maximum
into One Array values from all the individual data sets:
_ —| Setvariable | 4| —| Alphahlumeric | «
YA ™ — 00: 72.44
WOCITULT - Data | [sumdata | 01 83.75
Moise Generator sumdata .

T 02 96,50

036273

O 04: 99.35

_Until Break | 05 89.93

06: 52,43

| 07:81.02

—Yoa: 686

09: 8427

YA ™ 10: 9117

VAT 1197 99

Moise aneratur 178397

—|| Getvanable |4 | = Formula E 13:98:32

A 146939

Mame Icllplower(a, b result i—

Im Data [—1 B | 1587545

—| Setvariable | 4|
MNarme
H% | sumdata
[R=3

Figure 9-13. Collecting Maximum Values from Many Arrays

Chapter 9 339

Comparing Two
Arrays

Math Operations
Array Operations in VEE

This program simulatesinput databy using aNoise Generator. It getsan
initial data set and putsit in the global variable sumdata, then enters aloop
to obtain new data or quit the program.

Pressing the cet Data button gets anew waveform from aNoise
Generator, thenrecoversthe datain sumdata withaget variable
object; these two waveforms are summed into a Formula object, which
processes them and puts the result back into sumdata using a set
Variable object.

The Formula object accepts the new array dataon pin a and the array
sumdata ONn pin B. Theexpression cliplower (a,b) outputsaresult array
with the value of a if A > B and the value of B otherwise. If you use
clipUpper instead, you would obtain minimum values.

The example in Figure 9-14 compares two arrays of random numbers and
determines how many numbersin thefirst array are greater than those in the
second array. Comparisons between values typically userelational operators
(such as ==, !=and <=) and the triadic operator (A <B ?C: D), but these
will not solve this problem. Though they accept any data shape, they only
return scaar results. You can still perform relational operations by other
means that yield an array result.

=l randomSeed(seed) [=

|randumSeed((1D"B)’fracPan(nowoﬂUD)) Result

= randarmizeg,low, high) =]

|randnm|ze(ramp(1[ll]tl, 0,888, 0, 1) | Result

1 = Formula [« —~| Formula | | —|Alghaumeric| «
A | Icliplower(D, signofia-B)) Result ‘4. % | [sumd | | Result

= randuarmize f,low, high) [« \J_' 2
Irandnmlze(ramp(mﬂﬂ, 0,888, 0, 1) | Result

Figure 9-14. Comparing Values in Two Arrays

The randomSeed () function seeds the random-number generator with a
seed that varies rapidly with time. This ensures that the data varies between
different runs of the program. The two randomize () functions each
generate an array of 1000 random numbersin the range 0 to 1. Finally, the
expressions in the Formula objects perform the summation

sum (clipLower (0, signof (A-B)))

340 Chapter9

Using Alternate
Expressions

Math Operations
Array Operations in VEE

Here is how each part of the expression works:

1. aA-B provides an array where values are positiveif A > B, zero if A == B,
and negative if A <B.

2. signof (A-B) converts positive numbersinto 1, negative numbersinto
-1, and leaves O at 0.

3. clipLower (0, signof (A-B)) stripsall the-1 values out of the array,
resulting in an array that is 1 if A > B and 0 otherwise.

4. sum () then adds up the 1s and outputs the number of comparisons where
A>B.

The previous section shows how conventional relational operators can be
implemented for array operations using other techniques:

B A ==-B: (l-abs(signof(A-B)))

M A !'=- B: abs(signof(A-B))

B A > B: clipLower(0,signof (A-B))

B A < B: clipLower(0,-signof (A-B))

M A >=B: (l-clipLower(0,-signof (A-B)))
B A <= B: (l-clipLower (0,signof (A-B)))

Notice how subtracting an array of 1s and Osfrom 1 performs aNoT
operation on the array. Similar techniques can be used for comparison with
scalar values, rather than other arrays. You can aso perform Boolean
operations on the resulting arrays of 1sand Os.

For example, suppose that A1 and A2 are two such arrays. The following
logic operations hold:

B NOT Al: 1 - Al

M A1 AND A2: Al * A2

B A1 OR A2: signof (Al + A2)

B Al XOR A2: 1 - abs(signof((Al + A2) - 1))

You can use the results of these computations to perform “masking” on
arrays of the original va ues through multiplication. Those values that match
to O are removed and those that match to 1 are retained.

Chapter 9 341

Choosing Efficient
Techniques

Math Operations
Array Operations in VEE

Applying the previous techniques could result in programs with Formula
objects containing huge logic operations that are difficult to maintain. While
the goal isto eliminate or reduce loops by replacing multiple objects with
Formula objects, you could also use UserFunctions. A good understanding
of array-manipulation techniques allows you to bypass complicated formal
logic operations for more direct solutions.

The following exampl e shows the choices you can make in array
manipulation. Suppose an array of 8-bit unsigned datareceived from an 1/0
deviceis converted by VEE into 32-bit signed integer data and you want to
get the real values back. You can do thisin asingle expression by adding 256
to each value of the return array:

(A + (clipLower(-1,clipUpper(0,RA))) * (-256))

This expression performs the following operations:
1. clipUpper (0,A) convertsall positive valuesto O.

2. clipLower (-1,clipUpper (0,A)) convertsall negative valuesto -1
(recall that the inputs are integers, not reals). This creates an array that
has -1 for each negative value and O otherwise.

3. clipLower (-1, clipUpper(0,4)) * (-256) multipliesthat array
by -256 creating an array that has 256 for each negative value and 0
otherwise. This array isthen added to the original array to offset all the
negative values to their “true”’ positive value.

Another solution could have used relational operations as shown previoudly,
but it would have been much more complicated than this direct solution.

A very useful object for array computationsis the Comparator, which
allows extraction of array elements that meet specific criteria. Suppose you
want to determine the transitions in the following data stream:

000011001 1O0

The solution shown in Figure 9-15 is the easiest way to find the indexes of
the array elements where the value makes atransition from 0 to 1 and the
reverse.

342 Chapter9

Math Operations
Array Operations in VEE

| ntz |«

oooo: o -
ooo1:0
000z 0
0003 0
0004: 1

no0s: 1 — A |a[1:totsize(a)-1]-a[D:totsize(a)-2 Resultj

—| Farmula =]

000e: 0
ooo7: 0
000a: 1

noog9: 1
po10:0 —[int3z] = —_ Comp-arator =
= b Refvalue Passed |1
= Testwalue | == _=| Refvalue | Failed
TestValue

Failures 7

L«

—| UnBuild Coord | «| —| Formula = ;4AIphaNume.._ "
¥ Data i—a A | Jan1 Result :
Coord Data * '_l_|1: f
Y Data |1 -
- 28
a0

Figure 9-15. Finding Transition Points in an Array of Values

Although the program contains a Comparator, the key isthe Formula
object containing the expression

Afll: (totSize(A)-1)] - A[O0: (totSize(n)-2)]
To see how thisworks, add array indexes to the data stream:
BO:0 1:0 2:0 3:0 4:1 5:1 6:0 7:0 8:1 9:1 10:0

The array indexes are marked where a transition occurs. The expression
above performs a subtraction of the input array from itself, staggered by one
index, to yield the following new array:

0:0 1:0 2:0 3:0 4:1 5:1 6:0 7:0 8:1 9:1 10:0
- 0:0 1:0 2:0 3:0 4:1 5:1 6:0 7:0 8:1 9:1 10:0
0:0 1:0 2:0 3:1 4:0 5:-1 6:0 7:1 8:0 9:-1

The comparator checksthe Result array to see which elements are equal to
0. Array elements that fail the test are the indexes and are returned on the
Failures termina asan array of X-Y coordinates giving the index and
value of the failure. To retrieve only the index values, the tnbuild Coord
object separates the x and Y values. Then the x index values are incremented
by 1 to eliminate the effects of the staggered subtraction.

Chapter 9 343

Math Operations
Array Operations in VEE

The data obtained in the subtraction not only indicates the index of the
transaction, but its direction: 1 for a positive transition, -1 for a negative.
This operation is basically a difference-equation approach to performing a
differentiation.

344 Chapter9

10

Variables

Variables

This chapter describes variables in VEE, including;

B About Variables
B Using Variables

Note For information about using variables with ActiveX automation objects and
controls, see Chapter 13, “Using ActiveX Automation Objects and
Controls,”.

346 Chapter 10

Variables
About Variables

About Variables

There are two types of variablesin VEE: undeclared and declared. Both
types of variables can contain any datatype, including complex datatypes
such as waveforms and records. They can a so be any data shape, including
scalars and arrays.

About Undeclared Variables

Undeclared variables are the easiest to use but execute slower and do not
allow scoping (described in About Declared Variables, below). Undeclared
variables include the following:

B Global variables that can be used anywhere in the program. They are
created with the set variable object. They are deleted before the
programisrunif theDelete Variables at PreRun property isset.
Global variables must be created before they can be accessed viathe et
Variable object or used in expressions, or else your program will
generate an error.

Undeclared global variables are useful if you do not know what datatype
or shape your values will be or if the values may change type or shape. If
you want a scoped variable (i.e., local), use declared variables (see
“About Declared Variables’ on page 348).

B Temporary variables that are used only in Formula objects. You can
create atemporary variable, such as tmp, in a Formula by adding an
output terminal. For example, to swap the valuesinput in a Formula
object’sterminals a and b, use the temporary variable tmp. The
expression would look like tmp=a, a=b, b=tmp. For more
information about temporary variables, see Assignment in VEE Online
Help under Reference = Math Functions and Operators.

B Terminal names that are used as variables within objects (such asin
transaction or Formula objects).

Chapter 10 347

Variables
About Variables

About Declared Variables

Declared variables are defined before they are used. They have the
additional feature of scoping and allow VEE to run faster because the data
type and shape are known before run time. However, if you attempt to set a
declared variable with valuesthat are different from the data type or shape of
the values set in the declaration, the program will error.

To declare avariable, usethe bata = Variable = Declare Variable
object. When placed in a context, it declares the variable before any of the

other objects execute. When the variable has been declared, it has no value
until itisset viaaset variable Or aFormula oObject.

The scope of a declared variable must be specified inthe beclare
Variable object. The scopings are as follows:

B Clobal - Thevariable can be used anywhere in the program.

B Local to Context - Thevariable can only beusedinasingle
UserObject or UserFunction, or in Main. Thisvariable can be used in the
context that the Declare Vvariable objectisinand in UserObjects
nested inside the context. The variable cannot be used in UserFunctions
called from the context.

B Local to Library - Thevariable can only be used within thelibrary
of UserFunctionswherethe beclare variable object isused.
Declare Variable must belocated in one of the UserFunctions.

You cannot define multiple variables with the same name and scope. If this
happens, you will get an error.

About Variables Naming

You can use any valid variable name for avariable. Thefirst character must
be aletter. Letters, numbers, and the underscore character may be used in the
rest of the name. Variable names are not case sensitive (uppercase and
lowercase letters are equivalent). Special characters, including spaces, are
not allowed.

To retrieve the value of the variable, you must use the name that you
specified when the variable was declared or set.

348 Chapter 10

Variables
About Variables

When Execution Mode inDefault Preferences issetto VEE 5 mode
or higher, some names must be unique. See “Using V EE Execution Modes’
on page 17 for information about using variable namesin VEE 5 mode.
When Execution Mode iSSettO VEE 4 or VEE 3 mode the question of
precedence arises when you have named a variable the same name as
another variable. The order of precedence (from highest to lowest) is:

1. Input terminal name (such asin aFormula Or atransaction object)
2. Temporary variable (asin aFormula object)

3. Local to Context declared variable

4, Local to Library declared variable

5. Global declared variable

6. Global undeclared variable

If two variables with the same name are in an object, there is a conflict.
The variable with the highest precedenceis used.

Chapter 10 349

Variables
Using Variables

Using Variables
This section gives guiddines for using variables in VEE, including setting

initial values, accessing variable values, deleting variables, and using
variablesin libraries.

Setting I nitial Values

You must have set initial values before accessing any variables or VEE
generates an error. See Figure 10-1 for avariable example.

—| Realg4 | - —| Getvariable | 4|
aooo: 12 - Mame
0001: 34 Data NI
0002 22 ._J_| globalA — Mlphahume...| - |
0003: 1 T R -
D004: B R
- L 222
- —| Getvaradle || a1
Mame 46 ﬂ
Data =
glabala

Figure 10-1. A Variable Example

Theset variable must set theglobal variable beforethe et variable
attempts to retrieve it. To ensure this, the sequence output pin of the set
Variable object is connected to the sequence input pin of the Get
Variable object. If thisisnot done, the et variable may try to access
anon-existent global variable and an error will occur.

If the property Delete Variables at PreRun iSnot Set, you may not
receive an error and may receive old datainstead.

When declared variables are created, they are not initialized and must have a
value set in them before they are accessed viathe Get variable object or
used in expressions. If they do not, your program will generate an error. You
set valuesviathe set variable object or by using the Formula object.

350 Chapter 10

Variables
Using Variables

If the variable is an array or arecord, when using the Formula object you
must set the values of the entire array or record before trying to access any of
the elements. The examplein Figure 10-2 shows two different waysto
initialize values from a Formula object.

= Declare Variahle = -] T B = Alphafiurme..| =
Name: [global [pioball =0.00.00] | Resuty |0:0 -
Scope: | Global -] 1:0
. 20
Type: | Real64 vl _| Get globall | "| e
MNum Dims: | 1 vl e 40 =
Data |
| aloball
—| Formula =
— Declare Yariahle F
| IglobaIE: ramp(5,0,0) Result| |AI e
Mame: | global2 — 4]
Scope: | Global vl | Getgubaiz | | ot
Type: [Realbs -1 Name _J—|2;U
. Data 30
Num Dims: [] [alabalz | e =

Figure 10-2. Setting Array Values

Chapter 10 351

Variables
Using Variables

Accessing Variable Values

Once you have named a variable, you can access its value as many times as
you want in your program. You can use several methods to retrieve the
variable value. In the example in Figure 10-3, the value stored in the global
variable globala isretrieved once with acet variable object, a second
time by including the name globala in an expression in a Formula object,
and athird time by including the name globala in atransaction in aTo

File object:
- —| setvariable |+
— RealGd Fl
nooo: 12 Dat Hame
: o ata
00n1- 34 I globala Alohal
o0z 22 T -
no03: 1 - pit
0004 5 = —| Getvariahle | 4| 1: 34
- Marme 2022
Data —' .
glohalA E
- 4.6
_ Fnrmula —_ AlphaN
sort(globald) Result =
le 12
3:22
—_— To FI|E
| BV [
Ta File: rryFile |

[~ Clear File At PreRun & Cpen
WRITE TEXT glohala

= Diouhle-Click to Add Transaction =

Figure 10-3. Accessing a Variable Multiple Ways

Note You can include the name of any global variable in any expressionin a
Formula oObject or in any other expression that is evaluated at run time.

352 Chapter 10

Variables
Using Variables

Deleting Variables

To improve memory usage, usethe belete Variable object to free up
memory space when avariable is no longer needed. When undeclared
variables are deleted, their values and definitions are both deleted. When
declared variables are del eted, the values are reset to uninitialized values but
the definition remains.

When you set Delete Variable tO By Name, the closest variable of the
specified name is deleted. The closest variable is defined by the precedence.

Whenyou set Delete Variable toAll, all declared and undeclared
variablesin all scopings are affected, even the variables that are in imported
libraries. Declared variables are uninitialized and undeclared variables are
deleted (as described previously).

Deleting all Variables may not cause all memory to be freed or al ActiveX
Automation pointersto be released. See “ Deleting Automation Objects’ on
page 423 for more information.

To delete al variables before each execution of the program, select File =
Default Preferences andclick thecheck box Delete Variables at
PreRun. If this check box is not selected, the values of all variables will
remain and the declarations of declared variables will not reinitialize the
values

Using Variablesin Libraries

Because only UserFunctions are loaded when the library isimported, when
you Use Declare Variable objects you must put them in one of the
UserFunctions, not in the Main window of the library.

When avariableis scoped asaGlobal, itisonly used inthelocal program.
It cannot be used in any Remote Function that is called.

When alibrary isimported, al variables declared (viaDeclare Variable
objects) in the imported UserFunction are defined at that time for the scope
specified. For example, if the variable is scoped asaGlobal, it can be
accessed from any part of the program until the library is deleted. When a
library is deleted, all variables declared in its UserFunctions are deleted as
well.

Chapter 10 353

Variables
Using Variables

354 Chapter 10

11

Using Records and DataSets

Using Records and DataSets

This chapter introduces two concepts: the Record data type and the DataSet.
A dataset is acollection of Record containers saved into afile for later
retrieval. The chapter contents are:

B Using Records
B Using DataSets

356 Chapter 11

Using Records and DataSets
Using Records

Using Records

This section gives guidelines for using objects to create and manipulate
records, It includes understanding record containers, accessing records,
programmatically building records, and editing record fields.

Under standing Record Containers

There are several VEE objects that allow you to create and manipulate
records, including Record, Build Record, UnBuild Record, Merge
Record, SubRecord, Set Field, and Get Field. All these objectsare
located in the bata menu.

A container of the Record data type has named fields which represent data.
You can have as many named fields as you like in arecord. Each field can
contain another record, a scalar, or an array.

Therecord object alows you to create records by manually entering a
value for each field. Just configure the Record object asa scalar (array
eements = 0) or as an array (array elements = non-zero) with the
Properties dialog box, accessed from the object menu.

Therecord object in Figure 11-1 is configured as a record array with four
array elements. The record consists of five fields: the Text fields (Name,
Address and city) and the Int32 fields (Emp1No and zip). The Record
object allows you to step through the record from one array element to the
next by usingthe First, Prev, Next, and Last buttons. You can edit each
field as you go.

Chapter 11 357

Using Records and DataSets
Using Records

= Record |
| | 0 in: [0.. 3]
Field name Walue
Name ||.Jnhn Smith
Empine_| 555333 |
Address ||401 E. First St.
City | [Central City, USA
Zip ||54321
First | Prev | Net | Last |

= AlphaMumeric =
0 {"John Smith", 985333, "401 E. First St.", "Central City, USA", 84321}

|
1. {"Don Jones", 554433, "9000 5E County Rd. 12, "Central City, USA", 94321}
20 {"Susan Smith", 332244, "121 Second 5t.", "Central City, USA", 54321}

3 {"Joe Baker", 121212, "888 N. Apple St.", "Middletown, USA", 54322}

Figure 11-1. Example: A Record Container

When the program is run, the entire record is output on the Record output
pin. The AlphaNumeric display shows the entire record with four array
elements (0 through 3) each consisting of five record fields enclosed in
braces (" {}").

Accessing Records

The example programs in Figure 11-2 and Figure 11-3 show one way to
access arecord and extract individual fields.

Usethecet Field object to extract anindividual field from the record.
Get Fieldislocated under Data = Access Record. For the example
in Figure 11-2, Get Field objects are used to extract the entire Name and
EmplNo fields: TheGet Field objectisaFormula object with the default
expression rec.field.

358 Chapter 11

Using Records and DataSets
Using Records

—| AlphaMumeric | «
0: John Smith
= Record = —| rec field = 1 Don Jones
‘ [1 in: [0°.. 3] ‘ e RectName IM_'Z Susan Smith
Field name value 3 Joe Baker
Name |Pohnsmith
Empio_|[sssas | |
Address HW —[AlphaNumeric [«
—|City IW —| rec field = D Possas
zip |42t 1: 554433
— rec | [Recr™ EmpiNg | IMH _
First | | Prev | Next | | Last | 2332244
3121212

Figure 11-2. Retrieving Record Fields with Get Field

Usethe"dot" syntax to accessindividual fields, for example: Rec [*] . Name
and Rec [*] . Emp1No. Thissyntax isdescribed in Mathematically
Processing Data = General Concepts under Tell Me About in
VEE Help.

Rec [*] .Name means "get the Name field from all elements of the record
array on the Rec input pin." This syntax can be used in an expression in a
Formula Object or in any other expression that is evaluated at run time. For
example, you could use this syntax in atransaction inthe To string
object.

Chapter 11 359

Using Records and DataSets
Using Records

Usethe syntax Rec [1] .Name and Rec [1] . Emp1No to obtain just the
second element ("element 1") of each field, as shown in Figure 11-3.

—| Alphatumeric | =
= Record [= rec field =
| i n 03] | — rec | [Rec[1] .Name |Resu|t' Don Jones
Field name Yalue
Name |[ohn Smith |
Empio |[585sss ||
Address |01 E Firstst. |
Ciy Cental Cly, UsA . =] Alpharumeric |«
Zi o — —| rec.field =
4' e | [Rec(1]Empiio | | Resuit ji— 554433
First | Prey | Mext | Last |

Figure 11-3. Using Array Syntax in Get Field

360 Chapter 11

Note

Using Records and DataSets
Using Records

To retrieve severd or al fields from arecord use the tnBuild Record
object, as shown in Figure 11-4.

—| Mame List |~ —| Type List | «
0: Name 0 Text
= Record [= 1: EmpiNa 1: Intaz
‘ 0 & ‘ 2. Address 2 Text
I n- 03] 3 City 3 Text
Field name vallg 4 Zip 4. Int32
Mame Hjuhn Smith
Empitio_| [555333 = MName |-
orerme —| UnBuild Record | - | 0: John Smith
__Address |fi0TE. First st. e Lic I Don Jones
&I [Certral City, UsA Type List 2: SuUsan Smith
Zip ||54321 Marne 3: Joe Baker
First | | Prev | Next | | Last | Record Data| | Empiio
Address
City —| Empito |
Zip 0: 555333
_] 1. 554433
20332244
3121212
= Zip [« =] City =] | [=] Address =
0: 54321 0: Central City, USA 0: 401 E. First 5t.
1. 54321 1. Central City, USA 1. 8000 SE County Rd. 12
2 54321 20 Central City, USA 20121 Second St
T 549922 30 Middletown, USA 30888 N. Apple 5t

Figure 11-4. Retrieving Record Fields with UnBuild Record

TheunBuild Record object allowsyou to add outputs for every fieldin
therecord and providesName List and Type List outputs. These outputs
list the name and type of each field in the record.

The program is saved in thefilemanual3s.vee in your examples
directory.

Data cannot be automatically converted to and from the Record data type.
For example, to send Record datainto a Real input terminal you must extract
the field from the Record with the tnbuild Record object or use Get
Field withthe Rec.A syntax as described previously.

Chapter 11 361

Using Records and DataSets
Using Records

Programmatically Building Records

The Record object is useful for creating and editing simple records.
However, it is cumbersome for creating large records. You may also want to
create arecord from existing data. In such cases, use Build Record to
build arecord.

When you build arecord from individual data components with Build
Record, you must define the data shape of the output Record container.
TheBuild Record object givesyoutwo output Shape choiCes: Scalar
and Array 1D. In most cases you will find that Scalar, the default, is the
appropriate choice for output Shape.

The example in Figure 11-5 shows the difference between scalar and
Array 1D intheoutput record built from two input arrays.

= Build Record =
1 A

Cutput Shape:

DDD1; Second Scalar Record
0002 Third ' — 4 B

0004 Last -
= = L—| AlphaMurneric =

{«Text Array 10=, <Fealsd Array 10=}

— Alphaﬁume... F

o "First", 1}
00%. 8 = Build Record = 151 BEeane, 2
= U A | utput Shape: 2:{"Th|r|:| ',,3}
At 1D | Record 3 {"Fourth”, 4}
Iray 4. "Last", 9}

Figure 11-5. The Effect of Output Shape in Build Record

In Figure 11-5, when scalar is selected the output record is a scalar record
consisting of two fields, each being one of the input arrays. On the other
hand, when array 1D isselected for the same input data, the output record
isarecord array with the same number of elements as the two input arrays.
The datais matched, element for element, in the output record.

If two input arrays have different numbers of elements, only Scalar is
dlowed asthe output Shape. To create an Array 1D output record, all

362 Chapter 11

Using Records and DataSets
Using Records

input arrays must have the same number of elements or an error will occur.
However, you can mix scalar and array input data, as shown in the example
in Figure 11-6.

= Build Record =
Fi = Cutput Shape:
1001: Second Scalar Record
0002 Third ' 1B

0004 Last -
= = L—| Alphakurneric =

{<Text Array 10>, 1}

~| Realbd | i
1 — _
— — |Alphatlume...| «
0 {"First!, 1}
= Build Record = 1:{"Second", 1}
1A 2: {"Third", 1}

Cutput Shape:

A 1D Record 3 {"Fourth" 1}
S M 4:{"Last', 1}

Figure 11-6. Mixing Scalar and Array Input Data

In this case, the scalar Real value 1 is repeated five times in the output
record array if Array 1D isselected.

Editing Record Fields

You can usethe set Field object to modify afield in arecord. The
Set Field object isan assignment statement consisting of aleft-hand
expression set equa to aright-hand expression. The left-hand expression
specifies the fidd that you want to modify and the right-hand expression
specifies the new data.

Chapter 11 363

Using Records and DataSets
Using Records

The right-hand expression is evaluated and the record field specified by the
left-hand expression is assigned that value. See Figure 11-7 for an example.

— Realfd F — Alphaﬁume... F
ggg?i = = Build Recard = 0:{2.13
nonz- 7 |_}_' A Output Shape: — ;i:1i
0003 2 Array 1D | ot
0004: 9 B = ERERY
408, 1}
—_ .v'-\lphar':ume._ F
ReaI64 0213
L 1:{330, 1}
- recfeld h 2{?1}

= REEIE*‘J Rec[1].A=A"10 3 2,1}
33 448,13

Figure 11-7. Using Set Field to Edit a Record

In this example, afive-element record array is built with Build Record.
Theset Field object (titled rec.field = b) specifiesthat thefield
Rec[1] .A (then field of record element 1) isto be assigned thevalue a*10.

Thereisapotential for confusion here. In the left-hand expression, the a in
Rec [1] .Arefersto the A field of the record. However, in the right-hand
expressionthea ina*1o0 refersto the value at the a input of the set Field
object. This exemplifies the need for good names for variables and Record
fields.

The variable 2 hasthevalue 33, so a*10 is evaluated as 330, which is
assignedtorRec [11] . A, asshown in Figure 11-7. Note that none of the other
values of the record have changed.

Set FieldisaFormula Object. SeeAssignment inMath Functions
and Operators under Reference in VEE Online Help for more
information.

364 Chapter 11

Using Records and DataSets
Using DataSets

Using DataSets

VEE data (including waveforms) can be built into records and later
retrieved. You can aso store records into afile, called a DataSet. The To
DataSet and From DataSet Objectsallow you to store and retrieve
records to and from DataSets. They are located in the /0 menu.

A DataSet is a collection of Record containers saved into afile for later
retrieval. The To DataSet object collects Record data on itsinput and
writes that datato a named file (the DataSet). See Figure 11-8 for an
example.

—| Function Generatar =

Function | Sine |
Frequency | 100
Amplitude | 1

1 :
DeOffset | o Func | SineWave | Output Shape:
Fhase |Deg v” i

- Build Record =

Time Span 20m Record
Num Points 256 Scalar |
MNoise
= MNoise Generatar =]
Amplitude [05 | =1 To Data Set =
Time Span 20m | | noise ' | ol MO AIASEE myData_ |
IR (PRI 258 [Clear File At PreRun

Figure 11-8. Using To DataSet to Save a Record

Two waveforms, a sine wave and anoise waveform, are output to the Build
Record object which builds arecord. The record is then output to the To
DataSet object which writesthe datato thefilemyData. Clear File at
PreRun iS checked so any data previoudy stored in myData iscleared.

Once the data has been saved as a DataSet, use From DataSet to retrieve
the record, which can then be unbuilt if desired. The program in Figure 11-9
shows this technique.

Chapter 11 365

Using Records and DataSets
Using DataSets

= From Data Set = = Sine VWave =
15
From DataSet: myData | =
Y name
Get records: One
Rec |
Search Specifier (eg: Rec.A<10)
[1 i
Tracel 5 I
4] [+
il 20m
—| UnBuild Recard | «|
X name
MName List
= T Type List
ecord Data
Sinetiave —{ = Noise =
Moise L 15
4 Y name
— Sine + Moise F] _
15 Tracel | . T
= 4] [+
Y name] 20
X name
Tracel 5 I
4] [+
il 20m
X name

Figure 11-9. Using From DataSet to Retrieve a Record

The From DataSet object retrieves the record data from mybata and
outputsthe datato Unbuild Record, which separates out the sine wave
and noise data fields. In this example, the sine wave, the noise waveform,
and the sum of the two waveforms are each displayed in a separate xy
Trace Object.

The pair of programs of this last example are saved in the files
manual40.vee and manual4l.vee inthe examples directory.

366 Chapter 11

12

User-Defined Functions/Libraries

User-Defined Functions/Libraries

VEE provides 19 categories of built-in functions you can use in programs.
When one of these built-in functions is not exactly right for your program,
you can define your own function.

This chapter describes how to create custom functions with/using
UserFunctions.

VEE Pro supports three kinds of user-defined functions:

B UserFunctions
B Compiled Functions
B Remote Functions

This chapter describes UserFunctions, Compiled Functions, and Remote
Functions, in the following sections:

B About UserFunctions

B Using aLibrary of Functions
B About Compiled Functions
B About Remote Functions

368 Chapter 12

User-Defined Functions/Libraries
About UserFunctions

About User Functions

A UserFunction is specifically designed for creating a user-defined function.
You create a UserFunction by selecting it from the bevice menu or by
converting existing objects or an existing UserObject into a UserFunction.
This section describes how to create a UserFunction. The next section
describes how to convert a UserObject into a UserFunction.

To create a UserFunction, click Device = UserFunction. An empty
UserFunction window appears in the work area. Create your function by
adding terminals and objects as needed. Change the name to whatever you
want (spaces not allowed). See the VEE User’s Guide or How Do T inVEE
Online Help for additional details.

When the UserFunction is complete, you caniconify it or closeit to get it out
of theway of the rest of your program. You can call your UserFunction using
a Call object in your program (Device = Call) or other objects identified
below. A UserFunction can be saved in alibrary and imported into a
program with the Import Library object.

The advantage of creating a UserFunction over using a UserObject is that
you can call asingle UserFunction several timesin your program. Thus,
there is only one UserFunction to edit and maintain, rather than severa
instances of a UserObject.

When executed in VEE 4, or higher Execution Mode, a UserFunction will
time-slice when called from call, Formula, If/Then/Else, Of
Sequencer objects (only from the Function field).

A UserFunction will not time-dice when called fromaTo File, To
String, or similar object or if the Formula object’sformulais supplied viaa
control pin.

Converting Between User Objects and User Functions

To convert a UserObject into a UserFunction, select Make UserFunction
from the UserObject's object menu. The UserObject window isreplaced by a
UserFunction window with the same input and output terminals. The
UserObject object isreplaced by a UserFunction ca11 object.

Chapter 12 369

User-Defined Functions/Libraries
About UserFunctions

To reconvert the UserFunction back into a UserObject, select Make
UserObject from the object menu of the UserFunction window. Any calls
to the UserFunction remain (you will have to manually delete them), but
the UserFunction is automatically converted into a UserObject.

Calling a User Function from an Expression

You can call a UserFunction from an expression in a Formula object or
from any expression evaluated at run time, such asfrom a ToFile object.
The program in Figure 12-1 demonstrates several waysto call a
UserFunction.

—| ampl |- —| Setvariable |«

Mame —| ¥ Trace =

— ot
j —

—| Call Function = I
[— Function Name
— ¥ ¥+hoi
v [noiseur G
J- =| ¥ Trace |«

- —| Farmula =
WA I
AT | v |/fabstnaiseUF(v)) Result [-—

Function Generator J-

—| Farmula =

‘—1 ¥ | [abs{noiseUF(Y))-1.5 Result|\L

MMM

Figure 12-1. Calling a UserFunction from Expressions

—| ¥ Trace =

In the program, the ca11 object calls the UserFunction noiseur and
returns a sine wave with an added noise component. The expression
abs (noiseUF (Y)) inthefirst Formula object returnsthe absolute value

370 Chapter 12

User-Defined Functions/Libraries
About UserFunctions

of the waveform returned by the UserFunction. Thus, the displayed noisy
sine waveisrectified in the positive direction.

The expression abs (noiseUF (Y)) -1.5 in the second Formula object
also calls the UserFunction but adds a negative dc offset to the waveform.
The sequence pins are used to ensure correct propagation because the
UserFunction uses the global variable.

Thisprogram is saved in the file manual43.vee inthe examples
directory.

Chapter 12 371

User-Defined Functions/Libraries
Using a Library of Functions

Using aLibrary of Functions

Methods for creating each type of user-defined function and using itina
VEE program are similar. All these functions are called using the cal1l
object or from certain expressions, such asin sequencer Or Formula
objects. You can use any of the three kinds of user-defined functionsin a
library. To use alibrary of functions, follow these steps:

1. Import the library.

Usethebevice = Import Library object. Select the Library
Type (UserFunction, Compiled Function, Of Remote Function)
and fill in the appropriate fields. Specific information about these fields
is explained in the associated section in this chapter.

2. Call one or more functionsthat are contained in the library.

Usethe call, Formula, Of Sequencer objectsfrom the Device menu.
You can also use other objects that call expressions at run time, such as
1f/Then/Else Of To File. If youwant to have multiple values
returned from the function, you must usea cal1l object.

3. Deletethelibrary.

If memory management or program execution speed is a concern, usethe
Device = Delete Library object to programmatically freethe
library from memory. Otherwise, libraries are automatically deleted
when VEE exits.

Specific information about using different kinds of librariesislisted in the
following sections.

The ahility to call a UserFunction from an expression is very useful —
especialy when you include such an expression in atransaction in the
Sequencer object. See Chapter 14, “ Using the Sequencer Object,” for more
information about this topic.

372 Chapter 12

Note

User-Defined Functions/Libraries
Creating a UserFunction Library

Creating a User Function Library

So far we have looked at local UserFunctions that are created and used
within the same program. You can also create alibrary of multiple
UserFunctions stored externally and later imported into a program.

To create alibrary of UserFunctions, create the UserFunctions in the empty
VEE work area and save them to afile. For example, to create alibrary of
two UserFunctions, myRand1 and myRand2 (which add random numbers to
an input value), create the two UserFunctions as shown in Figure 12-2.

B myRand1

Formula =
A |20 | Resutt] %
= Formula |-|J/
= A e | Resu]

= Formula =

A | Ja+20 Result |

(% |
Formula |« |J
ﬂ B E+El Result |

Figure 12-2. Creating UserFunctions for a Library

To create a UserFunction library, save the program with a name that
identifiesit asalibrary. For example, use a .vlb extension instead of .vee.

Normally, the program should contain only UserFunctions. If other objects
arein the program (e.g., in Main), they areignored when the library is
imported. If you use Declare Variable objects, put them in one of the
UserFunctions, not in the Main window of the library.

Chapter 12 373

User-Defined Functions/Libraries
Creating a UserFunction Library

Importing and Calling a User Function

To import the UserFunction library into a program, use the Import
Library object. The program in Figure 12-3 imports the library from the
fileuser func_1lib and callsthe UserFunctionsmyRand1 and myRand2.

= Import-l_ibrar\,r =
Likrary Type | UserFunction =]
LibrargMame | mylin
File Name user_func_lib

= Call myRand1 = -
— | Alphakumeric
Function Marme o R RAEE]
A o 1.318
[myRand —
—|Realbd] T
1 L
= = Call myRand32 =] -
Function MNarme —I—I—I_ HEIERVTET) =

A K — 89.64
[ryRandz2 —

Figure 12-3. Importing a UserFunction Library

The Tmport Library object allowsyou to specify atype of library: user
Function, Compiled Function, Of Remote Function. If you select
UserFunction, You also specify aLibrary Name and File Name.

TheLibrary Name field specifiesalocal name for the library within the
program. Thismakesit possible for theDelete Library object to delete
the library from the program. In this case, Import Library atachesthe
name myLib to the library imported from thefile user func 1ib.

TheFile Name field specifiesthe file from which to import the library,
user func_libinthiscase. If you click on the File Namefield you can
select from alist of al library files.

This program is simple so it is not necessary to delete the UserFunction
library after it is used. In alarge program with callsto large libraries,
deleting alibrary when you no longer need it reduces the program’s memory
requirements.

374 Chapter 12

Note

User-Defined Functions/Libraries
Creating a UserFunction Library

You cannot edit UserFunctions imported with Device = Import
Library, but you can view their contents and set breakpoints for
debugging. To view imported UserFunctions, use the Program Explorer.

You can merge alibrary of UserFunctionsusing File = Merge Library.
Oncethe library is merged into your program, you can edit the individual
UserFunctionswith Edit = Edit UserFunction.

M erging User Functions

Merging a UserFunction lets you make it part of your program. Sinceit is
not imported, you can modify it as needed. A merged UserFunction is saved
with the VEE program and does not change if the original library changes.

To merge a UserFunction into a program, select File = Merge Library.
A dialog box opens displaying thefilesin thelibrary directory. Select thefile
containing the UserFunction library you want and click Open.

Chapter 12 375

Note

User-Defined Functions/Libraries
About Compiled Functions

About Compiled Functions

A Compiled Function is created by dynamically linking alibrary written in
C, C++, FORTRAN, or Pascal, to the VEE process. A library of compiled
functionsis called a shared library in UNIX and adynamic link library
(DLL) in Microsoft Windows.

Creating a Compiled Function is considerably more difficult than creating a
UserFunction. Once you have written alibrary of functionsin C or another
language, you will need to compile the functionsinto aDLL or shared
library. You will also have to create a definition file that will provide VEE
with information it needsto call your function.

Using a Compiled Function

To use a Compiled Function, you:
1. Write the external program.

2. Createthe DLL (Windows) or shared library (UNIX) and a definition
file.

3. Import the library and call the function from VEE.

4. Deletethelibrary from VEE memory when you are done.

Pascal shared libraries are supported only for HP 9000 Series 700
computers.

The methods for importing a Compiled Function library and for calling the
function are very similar to those for UserFunction libraries. The Import
Library object attaches the DLL to the VEE process and parses the
definition file declarations.

The definition file defines the type of data passed between the external
library and VEE. (Thisfileis discussed later in this section.) The Compiled
Function can then be called with the ca11 object or from such objects as
Formula and If/Then/Else.

376 Chapter 12

User-Defined Functions/Libraries
About Compiled Functions

Design Considerations for Compiled Functions

Using Compiled Functions, you can develop time-sensitive routinesin
another language and integrate them directly into your VEE program. You
can also use Compiled Functions to keep proprietary routines secure.

Because Compiled Functions do not timeslice (i.e., they execute until they
are done without interruption) they are only useful for specific purposes that
are not otherwise availablein VEE.

You can extend the capabilities of your VEE program by using Compiled
Functions, but it adds complexity to the VEE process. The key design goals
should be:

B Keep the purpose of the externa routine highly focused on a specific task

B Use Compiled Functions only when the capability or performance you
need is not available using a VEE UserFunction or an Execute
Program €scape to the operating system.

You can use any operating system facilities available in the program to be
linked, including math routines, instrument 1/0, etc. However, you cannot
access any VEE internal functions from within the external program to be
linked.

Although the use of Compiled Functions provides enhanced VEE
capabilities, some problems can occur. A few key ones are;

B VEE cannot trap errors originating in the external routine. Because your
externa routine becomes part of the VEE process, any errorsin that
routine propagate back to VEE. A failurein the external routine may
cause VEE to "hang" or otherwise fail. You need to be sure of what you
want the external routine to do and provide for error checking in the
routine. If your external routine exits so will VEE.

B Your routine must manage all memory that it needs. Be sure to deallocate
any memory that you may have allocated when the routine was running.

Chapter 12 377

User-Defined Functions/Libraries
About Compiled Functions

B Your external routine cannot convert data types the way V EE does. You
should configure the data input terminals of the ca11 object to accept
only the type and shape of data that is compatible with the external
routine.

B |f your external routine accepts arrays, it must have avalid pointer for the
type of datait will examine. The routine also must check the size of the
array on which it isworking. The best way to do thisisto pass the size
of the array from VEE as an input to the routine, separate from the array
itself. If your routine overwrites values of an array passed to it, use the
return value of the function to indicate how many of the array elements
arevalid.

B System |/O resources may become locked. Your external routineis
responsible for timeout provisions, etc.

B |f your external routine performs an invalid operation, such as
overwriting memory beyond the end of an array or dereferencing a null
or bad pointer, this can cause VEE to exit or error with a General
Protection Fault (MS Windows) or a segmentation violation (UNIX).

B |f your external routine has arrays or char* parameters, the memory
passed to these routines must be allocated in VEE. You should allocate
this memory by doing the following:

U For anarray input, usean A11loc Array object of the appropriate
type, and set the size appropriately.

U For astring input, use a Formula object. Delete the data input
terminal from the Formula object and enter an expression like
256*"a", Thiscreatesastring that is 256 characterslong (plusanull
byte) filled with a’s. Most V XIplug& play functions will not write
morethan 256 charactersinto aText parameter. However, it isbest to
check the Help on each function panel that requiresa Text input to be
sure.

378 Chapter 12

User-Defined Functions/Libraries
About Compiled Functions

Importing and Calling a Compiled Function

You can import aDLL into your VEE program with the Import Library
object, then call the Compiled Function with the ca11 object. The processis
very much like importing alibrary of UserFunctions and calling the
functions, as described at the beginning of this chapter.

To import a Compiled Function library, select Compiled Function inthe
Library Type field.

Just as for aUserFunction, the Library Name field attaches anameto
identify the library within the program, and the File Name field specifies
the file from which to import the library. For a Compiled Function, thereisa
fourth field, which specifies the name of thepefinition File, shownin
Figure 12-4.

—_ Impnrt-l_ibrar'g.f =

Library Type |Compiled Function =]

Libirary Marme | rmyLib
File Mame myFile.dl] |
Definition File rryFile h |

Figure 12-4. Using Import Library for Compiled Functions

The definition file defines the type of data passed between the external
routine and VEE. It contains prototypes for the functions.

After importing the library with Import Library, you can call the
Compiled Function by specifying the function namein the ca11 object. For
example, the ca11 object in Figure 12-5 calls the Compiled Function named
myFunction.

Chapter 12 379

User-Defined Functions/Libraries
About Compiled Functions

= Call Function =
vanSize| oo vame Ret'alue [i

= || myFLnction ra |1

Figure 12-5. Using Call for Compiled Functions

Select the desired function using select Function fromthe call object
menu or from the Function & Object Browser (Under Device =
Function & Object Browser), Or typethe nameinthe call object.

If VEE recognizes the function, the input and output terminals of the ca11
object are configured automatically for the function. (The necessary
information is supplied by the definition file.) You can reconfigure the ca11l
input and output terminals by selecting configure Pinout inthe object
menul.

VEE configuresthe ca11 object with the input terminals required by the
function and with aret value output terminal for the return value of the
function. There also will be an output terminal corresponding to each input
that is passed by reference.

You can aso call the Compiled Function by name from an expressionin a
Formula object or from other expressions evaluated at run time. For
example, you could call a Compiled Function by including its namein an
expression in a sequencer Or ToFile transaction.

However, only the Compiled Function’s return value (Ret Value inthe
Call object) can be obtained from within an expression. If you want to
obtain other parameters from the function, you have to use the ca11 object.

380 Chapter 12

The Definition File

User-Defined Functions/Libraries
About Compiled Functions

The call object or Formulaexpression determinesthe type of datait should
pass to the function based on the contents of the definition file. The
definition file defines the type of data the function returns, the function
name, and the arguments the function accepts. The data has the following
form:

<return type> <function name> (<type> <paramnames>, <type>
<paramnames, ...) ;

Where:

B <return type>CanbeZint,short,long,float,double,charh
or void.

B <function name> can beastring consisting of an apha character
followed by a phanumeric characters, up to atotal of 512 characters.

| <type>CanbeZint,short,long,float,double,int*,charh
short*, long*, float*, double*, char**, Or void.

B <paramname> can beastring consisting of an alpha character followed
by aphanumeric characters, up to atotal of 512 characters. The
parameter names are optional, but recommended. If a parameter isto be
passed by reference, the parameter name must be preceded by the
indirection symbol (*).

Thevalid return types are:
B character strings (char*, corresponding to the VEE Text data type)

B integers(short, int, long, corresponding to the VEE 1nt16 and
Int32 datatypes)

B single and double precision floating point real numbers (f1oat and
double corresponding to the VEE Real32 and Reale4 datatypes).

If you specify "pass by reference” for a parameter by preceding the
parameter name with *, VEE will pass the address of the information to your
function. If you specify "pass by value" for a parameter by leaving out the *,
VEE will copy the value (rather than the address of the value) to your
function. You will want to pass the data by reference if your external routine

Chapter 12 381

Note

Buildinga C
Function

User-Defined Functions/Libraries
About Compiled Functions

changes that data for propagation back to VEE. All arrays must be passed by
reference.

Any parameter passed to a Compiled Function by referenceisavailableasan
output terminal on the ca11 object. The output terminals will be ret
value for the function’s return value, plus an output for each input
parameter that was passed by reference.

V EE pushes 144 bytes on the stack. This allows up to 36 parametersto be
passed by reference to a Compiled Function. Up to 36 long integer
parameters or 18 double-precision floating-point parameters may be passed
by value.

For HP-UX, you must have the ANSI C compiler in order to generate the
position independent code needed to build a shared library for a Compiled
Function.

VEE dlows both "enclosed" comments and "to-end-of-line' commentsin
the definition file.

"Enclosed" comments use the delimiter sequence / *comments* /, where / *
and */ mark the beginning and end of the comment, respectively.

"To-end-of-line" comments use the delimiting characters // to indicate the
beginning of a comment that runsto the end of the current line.

The following C function accepts areal array and adds 1 to each element in
the array. The modified array isreturned to VEE on the Array terminal,
while the size of the array is returned ontheRet value terminal. This
function, once linked into V EE, becomes the Compiled Function called in
the VEE program shown in Figure 12-6.

382 Chapter 12

User-Defined Functions/Libraries
About Compiled Functions

/*
C code from manual49.c file

*/
#include <stdlib.h>

#ifdef WIN32

define DLLEXPORT __ declspec(dllexport)
#else

define DLLEXPORT

#endif

/* The description will show up on the Program Explorer when you select
"Show Description" from the object menu and the Function Selection
dialog box in the small window on the bottom of the box.

*/

DLLEXPORT char myFunc _desc[] = "This function adds 1.0 to the array
passed in";

DLLEXPORT long myFunc (long arraySize, double *array) {
long 1i;

for (i = 0; i < arraySize; i++, array++) { *array += 1.0; }

return (arraySize) ;

}

The definition file for this function is as follows:
/*
definition file for manual49.c

*/

long myFunc (long arraySize, double *array) ;

(Thisdefinition isthe same asthe ANSI C prototype definitioninthe Cfile.)

You must include any header files on which the routine depends. The library
should link against any other system libraries needed to resolve the system
functionsit calls.

Chapter 12 383

User-Defined Functions/Libraries
About Compiled Functions

The example program uses the ANSI C function prototype. The function
prototype declares the data types that V EE should pass into the function.

Thearray has been declared as apointer variable. VEE will put the addresses
of the information appearing onthe ca11 datain terminalsinto thisvariable.
The array size has been declared as along integer. VEE will put the value
(not the address) of the size of the array into this variable. The positions of
both the datainput terminals and the variabl e declarations areimportant. The
addresses of the dataitems (or their values) supplied to the data input pins
(from top to bottom) are placed in the variables in the function prototype
from left to right.

Onevariablein the C function (and correspondingly, one datainput terminal
inthe call object) isused to indicate the size of the array. The arraySize
variable is used to prevent data from being written beyond the end of the
array. If you overwrite the bounds of an array, the result depends on the
language you are using. In Pascal, which performs bounds checking, arun-
time error will result, stopping VEE. In languages like C, where thereis no
bounds checking, the result will be unpredictable, but intermittent data
corruption is probable.

This example has passed a pointer to the array so it is necessary to
dereference the data before the information can be used.

The arraySize variable has been passed by value so it will not show

up as a data output terminal. However, here we have used the function'’s
return value to return the size of the output array to VEE. Thistechniqueis
useful when you need to return an array that has fewer elements than the
input array.

384 Chapter 12

User-Defined Functions/Libraries
About Compiled Functions

The program in Figure 12-6 calls the Compiled Function created from the
example C program:

= Impart Library =
Library Type | Compiled Function =l
Library MName | myLibrary
File Name justilibiveetestexamples/manualimanualdasl |
Definition File jusriibivestestexamples/manualimanualds.n |
= HY Trace r
—| Function Generatar = SN) P ,
X : Y name | o !
Function | Cosine vl — \ oo .
Nt !
Frequency 100 v frh ;7
- P ;

) . Y .
Amplitude | 1 T e Y
DeOffset | 0 Func— [|
hese o= 2 Tracez - | I+
Time Span 20m - 5 o
Mum Points 256 |

| X name
| T
W J
—| Call Function =
totSizex) arraySize Function Mame Ret Yalue |—| .
Formula
array | myFunc array [—

Figure 12-6. Program Calling a Compiled Function

The examplein Figure 12-6 is saved in the filemanual49.vee inthe
examples directory. The Cfileissaved asmanual49. c, the definition file
asmanual49.h and the shared library aSmanual4a9.sl.

Creating a Compiled Function (UNIX)

To create a Compiled Function you must write aprogram in C, C++,
FORTRAN, or Pascal (HP 9000 Series 700 only) and write a definition file
for the function. Then you must create a shared library containing the
Compiled Function and bind the shared library into the VEE process.

Chapter 12 385

Creating a Shared
Library

Binding the Shared
Library

User-Defined Functions/Libraries
About Compiled Functions

To create a shared library, your function must be compiled as position-
independent code. This means that, instead of having entry points to your
routines exist as absolute addresses, your routine's symbol table will hold a
symbolic reference to your function’s name.

The symbol table is updated to reflect the absolute address of your named
function when the function is bound into the VEE environment. It must be
linked with a special option to create a shared library.

Suppose the example C routineisin the file named dL.ink . c. To compile
the file to be position independent, use the +z compiler option. You also
need to prevent the compiler from performing the link phase by using the -c
option. The compile command would look like this:

cc -Aa -c¢ +z dLink.c

This produces an output file named dLink . o, which you canthen link as a
shared library with the following command:

1d -b dLink.o

The -b option tellsthe linker to generate a shared library from position-
independent code. This produces a shared library named a . out.
Alternatively, you could use the command:

1d -b -o dLink.sl dLink.o

to obtain an output file (using the -o option) called dLink. s1.

VEE binds the shared library into the VEE process. All you needtodois
includean Import Library objectinyour program, specifying thelibrary
to import, then call the function by name (i.e., with acall object). When
Import Library executes, VEE bindsthe shared library and makesthe
appropriate input and output terminals available to the ca11 object.

Use the object menu choices from the cal1 object (Configure Pinout
and select Function) toconfigurethe call object correctly. The shared
library remains bound to the VEE process until VEE terminates or until the
library is expressly deleted.

Delete the shared library from VEE either by selecting belete Lib from
the Import Library object menu, or by includingthebelete Library
object in your program. You may have more than one library name pointing
to the same shared library file. If so, usetheDelete Library objectto

386 Chapter 12

Note

User-Defined Functions/Libraries
About Compiled Functions

delete each library. The shared library remains bound until the last library
pointing to it is deleted.

Thepelete Lib selectioninthe Import Library object menu unbinds
the shared library without regard to other Import Library objects.

When VEE binds a shared library, it defines the input and output terminals
needed for each Compiled Function. When you select a Compiled Function
for acall object, or when you execute a Configure Pinout, VEE
automatically configures cal1 with the appropriate terminals. The
algorithmis asfollows:

B Theappropriate input terminals are created for each input parameter to be
passed to the function (by reference or by value).

B Anoutput terminal labeled Ret value isconfigured to output the return
value of the Compiled Function. Thisis always the top-most output pin.

B An output terminal is created for every input that is passed by reference.

The names of the input and output terminals (except for Ret value) are
determined by the parameter names in the definition file. However, the
values output on the output terminals are a function of position, not name.
Thefirst (top-most) output pin is aways the return value.

The second output pin returns the value of the first parameter passed by
reference, etc. Thisis normally not a problem unless you add terminals after
the automatic pin configuration.

Creating a Dynamic Link Library (M SWindows)

VEE for Windows provides access to DL L s through the ca11 object and
through formula objects.

This section describes how to call aDLL, not how to writeaDLL. VEE
Version 3.2 and greater only calls 32-bit DLLS, not 16-bit DLLs.

Chapter 12 387

Creating the DLL

<return type>
<paramname>,

User-Defined Functions/Libraries
About Compiled Functions

Create the DLL before writing the VEE program. Create the DLL asyou
would any other DLL, except that only a subset of C typesare allowed. (See
“Creating the Definition File” on page 388.)

Declaring DLL Functions. If you are using Microsoft Visual C++ Version
2.0 or greater, the function definition should be:

___declspec(dllexport) long myFunc (...);

This definition eliminates the need for a . DEF file to export the function
from the DLL. Use the following command line to compile and link the
DLL:

cl /DWIN32 s$file.c /LD
/LD createsaDLL. Use /zi to generate debug information.

The MS linker links to the C multi-threaded Runtime Library by default. If
you use functions like Get ComputerName (), you need to link against
Kernel32.1lib. The compile/link line would look like:

cl /DWIN32 file.c /LD /link Kernel32.1lib

Declaring DLL Functions. To work with VEE, DLL functions can be
declaredas declspec (dllexport) using Microsoft C++ version 2.0 or
greater. This eliminates the need for a . DEF file. For example,

ageneric function could be created as follows:

__declspec(dllexport) long genericFunc (long a) {return (a*2) ; }
If you are not using Microsoft Visual C++, the . DEF file contains:

EXPORTS genericFunc
And the function definition looks like:

long genericFunc (long a) ;

Creating the Definition File. The definition file contains alist of
prototypes of the imported functions. VEE uses this file to configure the
Call objects and to determine how to pass parameters to the DLL function.
The format for these prototypesis.

<modifier> <function name> (<type> <paramnames>, <type>

L)

388 Chapter 12

Parameter
Limitations

User-Defined Functions/Libraries
About Compiled Functions

where:

B <return type>CanbeZint,short,long,float,double,charh
or void.

B <function names can beastring consisting of an alpha character
followed by a phanumeric characters, up to atotal of 512 characters.

B <modifiers>canbe cdecl, pascal,Or stdcall

B <type> canbe int, short, long, float double, int*, char*,
short*, long*, float*, double*, char**, Or void.

B <paramname> Can be astring consisting of an a pha character followed
by alphanumeric characters, up to atotal of 512 characters. The
parameter names are optional, but recommended. |f a parameter isto be
passed by reference, the parameter name must be preceded by the
indirection symbol (*).

For example:
Pass in four parameters, return along:
long aFunc (double *,long param2, long *param3, char *);
No input parameters, return a double:
double aFunc() ;
Passin astring, return along:
long aFunc (char *aString) ;
Passin an array of strings, return along:

long aFunc (char **aString) ;

A DLL function called from VEE pushes a maximum of 144 bytes on the
stack. Thislimits the number of parameters used by the function. Any
combination of parameters may be used as long as the 144-byte limit is not
exceeded. A long uses four bytes, a double uses eight bytes and a pointer
uses four bytes. For example, afunction could have 36 longs, or 18 doubles,
or 20 pointers and 8 doubles.

Chapter 12 389

The Import Library
Object

The Call Object

User-Defined Functions/Libraries
About Compiled Functions

Before you can usea call object or Formula box to execute aDLL
function you must import the function into the VEE environment viathe
Import Library object. Onthe Import Library object, select
Compiled Function under Library Type. Enter the correct definition
filenameusing thebefinition File button. Finally, select the correct
fileusngthe File Name button. The Library Name button assignsa
logical name to a set of functions and does not need to be changed.

Beforeusing aDLL function with the cal1 object you must configure the
Call object. The easiest way to do thisisto select Load Lib onthe
Import Library object menuto load the DLL fileintothe VEE
environment. Then, select Select Function onthecall object menu.

VEE will bring up adialog box with alist of all the functionslisted in the
definitions file. When you select a function, VEE automatically configures
the ca11 object with the correct input and output terminals and function
name.

You can also configure the ca11 object manually by modifying the function
name and adding the appropriate input and output terminals:

1. Configure the same number of input terminals as there are parameters
passed to the function. The top input terminal is the first parameter
passed to the function. The next terminal down from the top isthe second
parameter, etc.

2. Configure the output terminals so the parameters passed by reference
appear as output terminals on the ca11 object. Parameters passed by
value cannot be assigned as output terminas. The top output terminal is
the value returned by the function. The next terminal down isthe first
parameter passed by reference, etc.

3. Enter the correct DLL function name in the Function Name field.

For example, for a DLL function defined as
long foo(double *x, double y, long *z);

you need three input terminals for x, v, and z and three output terminals,
one for the return value and two for x and z. The Function Name field
would contain foo. If the number of input and output terminals does not

390 Chapter 12

The Delete Library
Object

User-Defined Functions/Libraries
About Compiled Functions

exactly match the number of parametersin the function, VEE generates an
error.

If the DLL library has already been loaded and you enter the function name
inthe Function Name field, you can also usethe configure Pinout
selection on the ca11 object menu to configure the terminals.

If you have very large programs you may want to delete libraries after you
usethem. Thepelete Library object deleteslibrariesfrom memory just
asthepelete Lib selection onthe Import Library object menu does.

Using DLL Functionsin Formula Objects

You can also use DLL functionsin formula objects. With formula objects,
only the return value is used in the formula. The parameters passed by
reference cannot be accessed. For example, the DLL function defined above
isaformula:

4.5 + foo(a, b, c¢) * 10

where a isthe top input terminal on the formula object, b isnext, and c is
last. The call to £oo must have the correct number of parameters or VEE
generates an error.

Chapter 12 391

User-Defined Functions/Libraries
About Remote Functions

About Remote Functions

A Remote Function is a UserFunction that runsin another VEE processon a
remote host computer. Remote Functions are a special case of UserFunction.
See “ About UserFunctions’ on page 369 for general information that applies
to UserFunctions.

Using Remote Functions

The Remote Function is called from the local VEE process over the LAN.
Just as for UserFunctions and Compiled Functions, import alibrary of
Remote Functions with the Import Library object.

When one or more Remote Functions have been imported, they are called by
using the cal1 object or by including function names in expressions. You
include Remote Function callsin your program just as you would
UserFunctions. However, some differences and some networking
technicalities are described in this section.

Create alibrary of Remote Functions just as you would a library of
UserFunctions, but save it on the intended remote host computer. The
intended remote host computer must also have VEE Pro or VEE Pro Run
Timeinstalled onit.

The library of Remote Functions is imported not into the local VEE process
but in a special invocation of VEE called a"service" that runs on the remote
host. Thelocal VEE processis called the "client."

The client VEE process imports the Remote Function library using the
Import Library object. Whenyou select Remote Function for the
Library Type field, some new fields appear as shown in Figure 12-7.

392 Chapter 12

User-Defined Functions/Libraries
About Remote Functions

Remote File Name
Remote Timeout

Display Server
Geometry (800x500+0-07
Remote Debug

= Impnrt_LitJraw G
Library Type | Remote Function =]
Library Marme ik

Remote Host Name localhost

fusersimyDirmyFile vee

|
|
|
| G0
|
|

hiplslv

-

Figure 12-7. Import Library for Remote Functions

TheLibrary Type and Library Name fields function the same as for
UserFunctions and Compiled Functions. The other fields are as follows:

B Remote Host Name - The name of the host on which the "service" VEE
processisto run (the "remote host"). This name can be the common or
symbolic name of the host (for example myhost) or the | P address of the
host inthisfield (for example 14.13.29.99).

B Remote File Name - The name of the Remote Function library file.
TheRemote File Name isanalogoustotheFile Name field for a
UserFunction library. However, you must specify the absolute path to the
file. Hence the path and file name can be rather long. You may want to
have all users place remote function library filesin acommon place, such

as

/users/remfunc/ Or C: \USERS\REMFUNC.

Chapter 12

393

Note

User-Defined Functions/Libraries
About Remote Functions

The remote VEE service invoked by the client is dependent on the Host
Name specified inthe Import Library object. If you have two Import
Library objects using the ssame Host Name, Only one service processis
invoked. Evenif two different Library Names and Remote File Names
are used, each communicates with the same service. On the other hand, if
each Import Library usesadifferent Host Name, two Separate services
are invoked.

B Remote Timeout - A timeout period in seconds for communication
with the VEE service. If the VEE service has not returned the expected
results of a Remote Function within this time period, an error occurs.

B Display Server - Enter aresolvable host name or | P address. The host
must have an X Server running and permissions must be set to have an X
client display on the specified machine. If the serviceisinstantiated on an
MS Windows machine, theDisplay Server field must bethe same as
the Remote Host Name. On HP-UX, they can be different.

B Geometry - Enter theinitial geometry for the window that contains
the view of the remote VEE, in the standard geometry format. For
example, 800x500+0-0.

B Remote Debug - When thischeck box is sdlected, all UserFunctions
within the library execute in debug mode (i.e., you will be ableto
perform debugging on them, such as setting breakpoints and doing line
probes). This setting works with UserFunctions whether or not they have
panel views.

When the Tmport Library object isexecuted (either by selecting Load
Lib from the object menu or during normal program execution), aVEE
server process is started on the remote host specified in the Host Name
field. The client process and the server process are connected over the
network and are able to communicate.

When acal1l object in the client VEE calls a Remote Function, the
arguments (the datainput pins on the cal1 object) are sent over the network
to the remote service, the Remote Function is executed, and the results are
sent back to the ca11 object and output on its data output pins.

394 Chapter 12

User-Defined Functions/Libraries
About Remote Functions

If your program deletes the library of Remote Functions with the belete
Library object, the Remote Functions associated with the library are
removed. You can load multiple librariesin a VEE server process, then
del ete each one as needed without canceling the service connection. The
VEE server exists while the VEE client process continues to run.

The service VEE process can exist on the same computer or "host" as the
client or on another host as long as there is a network connection between
them. The most common connection is between two hostson a LAN.
However, if a network path exists, the two hosts could be a continent apart.

The VEE service process has some attributes that are different from anormal
VEE process:

1. The VEE service process executes only Remote Functions that are
contained in the Remote Function library named by Import Library.

2. Remote Functions have views associated with them. When you call a
remote function, you can have aVEE window appear on the remote host
if the UserFunction displays a panel view.

3. Global variables (declared and undeclared) are not shared between the
processes.

4. Remoate Functions do not time-slice when called.
5. Parameters of type object cannot be passed to or from a Remote
Function (includes ActiveX Automation objects or pointers to ActiveX

controls).

6. The Execution Mode used by the service VEE processis that of the
user’s .veerc file, not that saved in the file that is imported.

7. Embedded .veeio file configurationsin the file imported by the service
VEE process are ignored. Only the global 1/0 configuration file is used.

If you are running Windows, you have to start the VEE Service Manager
manually, as follows:

1. Gotothe VEE ingtadllation directory

Chapter 12 395

User-Defined Functions/Libraries
About Remote Functions

2. Execute veesm.exe

3. When the console window appears, you can minimize it to get it out of
the way

4. To stop the VEE Service Manager process, open the console window and
press Ctrl+C.

To automate the VEE Service Manager startup:
1. Create ashortcut to veesm.exe
2. Sedlect Start = Programs

3. Move the shortcut to the Startup folder.

UNIX Security, UIDs, and Names

When your client VEE process runs a service V EE process on aremote host,
some security requirements must be satisfied. The basic requirement is that
in order to invoke the service VEE process, you must have a user name on
the remote host which is the same as your user name on the computer
running the client VEE process. (However, the passwords need not be the
same.)

Also, you must have adirectory inthe /users directory on the remote host.
In addition, in order to establish network communication between the two
hosts, either the remote host must have a /etc/hosts.equiv filewith an
entry for the client host, or the user must have a . rhosts filein the $HOME
directory on the remote host that contains an entry for the client host.

An example follows.

Suppose the client host can be identified as follows:
Client host: myhost
User: mike
Password: twoheads

And the service host can be identified as follows:

396 Chapter 12

Note

User-Defined Functions/Libraries
About Remote Functions

Service host: remhost
Usar mike

Password: arebetter
Directory: /users/mike

In this case, you must have one of the following on the service host:
B An /etc/hosts.equiv filewith the entry: myhost

or

B A /users/mike/.rhosts filewith the entry: myhost mike

The /etc/hosts . equiv file can be modified only by a super-user (usually
the system administrator), while the . rhosts file can be modified by the
user. It isacommon practice to use the same /etc/hosts.equiv fileon
al computersin a particular subnet, listing all of those computers as entries.
The /etc/hosts.equiv fileis checked first for the proper entry for the
client host. If no entry for the client host isfound there, the . rhosts fileis
checked.

In calling a service VEE process, the password is not required or called for.
You must have the correct entry for the client in either the hosts.equiv
file or the . rhosts file on the remote host.

Another factor in UNIX security isthe user id and group id, called the UID
and GID, respectively. The UID isaunique integer supplied to each user on
ahost by the /etc/passwd file. The GID isaunique integer supplied to
groups of users. All UNIX processes have a UID and GID associated with
them. The UID and GID determines which files or directories a user can
read, write, and execute.

The VEE service on the service host will have the GID and UID of the user
who invoked the process from the client host. This means that the file
permissions are the same as if the user was running a normal interactive
VEE session.

Chapter 12 397

Note

User-Defined Functions/Libraries
About Remote Functions

Resource Files

The VEE.IO or .veeio and VEE.RC or .veerc files used by the VEE service
process are those that belong to the user who invokes the process on the
remote host. For the user mike in our previous example, the VEE service
process reads the following files on host remhost:

/users/mike/.veeio /users/mike/.veerc

(VEE only readsthe VEE.IO or .vedio file. The VEE.RC or .veercfileis
used for trig preferences and Execution Mode only.)

Errors

Two classes of errors can occur in aremote VEE service:

B Fatal Errors- Errors, like the timeout violation discussed previously, that
mean that the service ismost likely in aunusabl e state. When afatal error
occursin aVEE service, an error message appears advising the user that
the error was fatal. If this occurs, you need to re-import the Remote
Function library. The VEE client will attempt to terminate the remote
service.

In most cases, afatal error only occursif something has gone wrong with
the network or calling the remote service. Normally, afatal error is not
caused by a problem in the Remate Function itself.

B Non-Fatal Errors - Almost exclusively errors that occur within the
Remote Function itself (for example a divide-by-zero error). Such errors
normally occur whether the function islocal or remote. The normal error
message display occurs with the name of the Remote Function in which
the error occurred.

It is possible to write a Remote Function that hangs, such as an infinite loop.
In this case, the Remote Function times out with a fatal error message. The
VEE client attempts to remove the service but fails since the service never
responds. You need to terminate the process on the remote machine. In VEE
for UNIX you log onto the remote host, determine the processid with ps,

and terminate the process with ki11.

398 Chapter 12

13

Using ActiveX Automation Objectsand
Controls

Note

Using ActiveX Automation Objectsand Controls

VEE for Windows supports ActiveX automation and controls on PCs
running Windows 95, 98, 2000, or NT 4.0. ActiveX technology is not
supported on UNIX. This chapter explains how to use ActiveX automation
and controlsin VEE, but does not describe ActiveX technology. The chapter
contents are:

B Using ActiveX Automation in VEE
B Using ActiveX Automation Objects
B Using ActiveX Automation Controls

Recommended Reading

Microsoft Office 97 Visual Basic Programmer’s Guide.
Microsoft Press, 1997. ISBN 1572313404.

Microsoft Office 2000 Visual Basic Programmer’s Guide.
Microsoft Press, 1999. ISBN 1572319526.

VEE implements ActiveX support using the standard established by
Microsoft Visual Basic. If you are not familiar with ActiveX technology,
review the chaptersin these books that discuss Object Models and ActiveX
Controls. Understanding these concepts will help you use VEE's ActiveX
features.

400 Chapter 13

Note

Using ActiveX Automation Objects and Controls
Using ActiveX Automation in VEE

Using ActiveX Automation in VEE

ActiveX automation lets you use VEE as an automation controller to control
other Windows applications such as Microsoft Word, Excel, Access, and
Seagate Crystal Reports. You can perform such activities as sending data to
the applications for report generation and reading data back from them. For
automation-capabl e applications, this supersedes Dynamic Data Exchange
(DDE).

ActiveX controls are available from various vendors. They extend VEE
functionality by providing domain-specific services via ActiveX automation
properties, methods, and events. Most ActiveX controls also provide a user
interface that lets you manipulate a control such asa"dlider" to input avalue
into a program, just as you would do with an VEE s1ider object.

To enable ActiveX support, you must set VEE to VEE 5 or VEE 6 Execution
Modeinthebefault Preferences diaog box, under the General tab.
VEE 6 isthe default mode for new programs. The status bar at the bottom of
VEE's window displays the current mode. If you are adding ActiveX
functionality to a program developed in VEE Versions 3.x, 4.x, or 5.x, make
sure your program runsin VEE 5 or VEE 6 Execution Mode before adding
new features. See “Using VEE Execution Modes’ on page 17 for more
information.

Several examples are available that demonstrate the use of ActiveX
automation and ActiveX controls. They arelocated in the VEE installation
directory under \examples\ActiveXAutomation and
\ActiveXControls. To open and run these examples use Help = Open
Example....

Chapter 13 401

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Using ActiveX Automation Objects

Set VEE to VEE 5 or VEE 6 Execution Mode (inDefault Preferences)
to enable ActiveX support.

Making Automation Objects Availablein VEE

When you install Windows applications, it isvery likely that ActiveX type
libraries are also installed that allow the applications to act as automation
servers. Type libraries describe the capabilities of an ActiveX object and are
availablefor useif they exist on your system.You may prefer to select
specific type libraries in VEE for the following reasons:

B To have VEE perform type checking on variables declared for ActiveX
objects where the object type is defined (see “ Declaring Automation
Object Variables’ on page 404).

B To catch events generated by an automation object (see “Handling
Automation Object Events’ on page 423).

B To view information in the ActiveX Object Browser (see “Using the
ActiveX Object Browser” on page 411).

To select the type libraries you want to reference in aprogram, click Device
= ActiveX Automation References... TheActiveX Automation
References dialog box appearslisting al type libraries registered by the
Windows Registry. Figure 13-1 shows the dialog box with the Microsoft
Access library selected for use.

402 Chapter 13

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

L Automation References

Registered Automation Servers:

[]Acrokbat Scan Type Library

[CIADaM sutomation Serer Type Library
[IInternet Explorer Scripting Ohject Maodel Cancel
[lw&uto 1.0 Type Library
[JLicensemar 1.0 Type Library
I
dicrosoft A Mindows 4
[CIicrosoft Activex Plugin

[IMicrosoft DAD 2.503.58 Compatibility Library
I Microsoft DAD 3.5 Ohject Library
[IMicrosoft Excel 5.0 Ohject Library
[IMicrosoft HTML Intrinsic Controls Help
[IMicrosoft Internet Controls
[IMicrosoft Jet SQL Help Topics
[IMicrosoft Office 84 Object Library
[IMicrosoft Remote Data Object 2.0

] 0OLE Automation Binder 1.0 Type Library
gPuwerPnint.ApplicatiDn.? =

rMicrosoft Access far Windows 95
Location: CiMSOficelaccess\WSACCESS TLE

| »

ek

Ok

Browse...

Figure 13-1. Selecting ActiveX Automation Type Libraries

Your list is probably different, depending on the applications you have
installed. When you highlight alibrary name, its |ocation appearsin the
dialog box status area. When you find the automation server you want to
use, click the check box by the library name (or double-click the name itself)
so acheck mark appears. Then, click ok.

Thisloads the selected type library and searches it for the object classes,
dispatch interfaces, and eventsthat it exports. You can select multiple
libraries, but you should select only the ones you plan to use since selected
libraries use memory.

If you know atypelibrary file existsfor an automation server, but it does not
appear intheligt, it is possible the type library was not registered when the
associated application was installed. Pressthe Browse button to find the
type library missing from the list. When you locate and open the type library
file, VEE will attempt to register the type library and add it to the list.

Chapter 13 403

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Declaring Automation Object Variables

You can declare a variable for an ActiveX automation object using the new
Object datatype (Data = Variable = Declare Variable). The
declared variable is areference to an object that livesin another process. For
instance, it might point to a ComboBox in Access. As shown in Figure 13-2,
when you set the variable Type to Object the dialog box expandsto list the
library name, class, and enabled events.

= Declare combo r

Marme: | cormbo ¥ Specify Object Type —
Library: Access

Scope: I Global ;I Clagss: ComhoBox

Type: | Object =] | Events: Enahled

Mum Dims: | 0 = Edit.. |

Figure 13-2. Declaring an ActiveX Automation Variable

You can specify the object variable's type further by clicking specify
Object Type SO acheck mark appears. Then, click the Edit button to
accessthe specify Object Type dialog box that letsyou set the library
and class names and enable events available for the class.

If you are using the Access Object Library, you can declare avariable
combo, then specify the object typeas L.ibrary: Access and Class:
ComboBox as shown in Figure 13-3. In this example, the class ComboBox
contains events. To use the events, click Enable Events. If eventsare
not available for a class, the checkbox is grayed out.

After specifying the object type, click ok to dismiss the dialog box and
returnto beclare Variable, which displaysthe information.

404 Chapter 13

Note

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Specify O

Library: 8
Class: | ComboBox 7|
¥ Enahle Events

0K | Cancell Helpl

Figure 13-3. Specifying the Automation Object Type

If you enable events, you can create an event-handler UserFunction for each
event that you want to catch. For information about using events, see
“Handling Automation Object Events’ on page 423.

Aswith any VEE variable, declaring avariable is optional and doing so does
not create the automation object in the program. However, if you declare
variables for automation objects and specify the object type details, VEE
does type checking automatically to assure that only objects of the specified
Library and Class type are assigned to the declared variable.

If you declare avariable for an ActiveX object when developing a program
in Windows and then open the program in HP-UX, the program still contains
the variable declaration but ignores the object type specifications. The
Declare Variable object maintains the object type specifications and
does not let you change them.

Creating an Automation Object in a Program

To control a server application from VEE, you need to create an automation
object in your program. The createobject function lets you do that. To
put the function in your program, click the fx toolbar button to get the
Function & Object Browser and then select:

Type: Built-in Functions
Category: ActiveX Automation
Member: CreateObject

Chapter 13 405

Note

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Click create Formula and placethe Formula object in your program.
The Formula contains the expression

CreateObject (ProgID)

which you need to modify to perform the desired action.

ProgID isahuman-readable string that identifies the Automation object
that you want to create. To determine the progID for an automation object,
refer to the vendor’s documentation.

Most of the time you want a new instance of an automation object created in
anew instance of the server application. For example, the following VEE
expression starts a new instance of Excel (even if Excel isalready running)
and returns a reference to a new "Workbook" object tied to the excel
variable.

SET excel = CreateObject ("Excel.Sheet")

Using Distributed Component Object Model (DCOM)

DCOM alowsthe Automation client (VEE) to control the Automation
server (Excel, Access, etc.) remotely. You can run V EE on one computer and
control Excel, for example, running on another computer. The second
computer does not need VEE installed, just the application VEE is
controlling.

To do this, the createobject function takes an optional second parameter
that specifies the name of aremote host computer (server) on which to
instantiate the object. (Thisfunctionality requiresthat DCOM beinstalled on
both the client and server computers and that the proper security settings
have been configured using dcomenfg. exe.) With this additional
parameter, the definition of createObject () looks like the following:

CreateObject ("ProgID", ["hostName'])

where hostName hasto be of type Text. hostName can be specified as
either avalid UNC or DNS domain name. Valid hos tName specifications
are shown below:

Set obj = CreateObject ("ProgID", "server"
Set obj = CreateObject ("ProgID", "\\\\server")

406 Chapter 13

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Set obj = CreateObject ("ProgID", "server.domain.com")
Set obj = CreateObject ("ProgID", "135.5.33.19")

VEE does not provide any programmatic control over the security settings
used to instantiate objects on remote computers. This can be accomplished
statically viathe dcomenfg.exe program.

Getting an Existing Automation Object

If you already created an automation object, you can get an active object or
load an existing object from afile by using the Getobject function. To put
the function in your program, click the fx toolbar button to get the
Function & Object Browser, then select:

Type: Built-in Functions
Category: ActiveX Automation
Member: GetObject

Click create Formula and placethe Formula object in your program.
The Formula contains the expression

GetObject ("fileName", "ProgID")
which you need to modify to perform the desired action.

The following expression gets an active object and returns areferenceto a
currently running Excel application’s Application object. This call will
fail if Excel isnot running.

SET excel = GetObject("","Excel.Application")

The following expressions load an existing object from file. The progID
parameter is optional:

SET excel = GetObject ("d:/tmp/TestData.xls", "Excel.Sheet")
or
SET excel = GetObject ("d:/tmp/TestData.xls")

They return areference to the sheet object associated with
d:/tmp/TestData.xls inthe currently running Excel application. If
Excel isnot already running, it will be started before |oading the object. If
ProgID isomitted, VEE uses the Component Object Model (COM) library
to determine what application the file is associated with.

Chapter 13 407

Getting and Setting
Properties

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Manipulating Automation Objects

After creating an automation object, you can manipulate the object to control
server applications. Manipulating automation objectsinvolves three basic
operations. getting properties, setting properties, and calling methods. This
section demonstrates these using previously initialized object variables
named cell, sheet, and excel. The VEE keywords SET and ByRef are
introduced.

The expressionsin this section are exampl es of getting and setting a property
of an object. The following expression gets a property, where the value
property returns the contents of the ce11:

contents = cell.value

In the next expression, the value property returns the contents of the cell:
contents = sheet.cells(1,1) .value

The next expression does the same property-getting action as the previous

expression by implying the . value property because of default properties
(explained below):

contents = sheet.cells(1,1)

Sometimes you want the contents, value and default property of the right-
hand side (which happens by default) and sometimes you want a pointer to
the object on the right-hand side, not its value. To get the object pointer you
need to use SET to tell VEE not to get the default value. The next expression
sets an object reference, where the ce11 variableis set to reference one cell
out of the "collection" of cells:

SET cell = sheet.cells(1,1)

The difference between this example and the second exampleis that SET
specifies that the left-hand-side wants the right-hand-side object itself, not
its default property.

408 Chapter 13

Calling Methods

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

The following expressions are examples of setting a property of an object.
The following three expressions are identical because of default properties.

cell.value = "Test Data2:"
sheet.cells(1,1) .value = "Test Data2"
(1

1
sheet.cells 1) = "Test Data2"

About Default Properties. Most automation objects support the concept of
adefault property or method. You can use this concept when manipulating
automation objects as shown in the previous examples. In the case of cel1,
its default property isvalue. So, the first example abovein getting a
property could use this concept to imply the . value property and be entered
as

contents = cell
This means that the expression
contents = sheet.cells(1,1)

would not only return a cell from the collection of cells, but it would also
evaluate the default property (.value) onthat cell asin the expression

contents = sheet.cells(1,1) .value

To get acell itself from the collection of cells, you must use the keyword
SET in the expression such as

SET cell = sheet.cells(1l,1)

Thissets ce11 to be a pointer to that cell in Excel. Compare thisto the
expression

contents = sheet.cells(1,1)

(mentioned above) where contents gets the contents of that cell in Excel.
Also, the .value property isimplied on set Property, such that the
following two expressions perform the identical function:

cell.value = "Test Data”

cell = "Test Data"

Calling amethod is similar to getting a property, but methods have
parenthesis-like () functions and can take parameters. Properties are

Chapter 13 409

Using Enumerations

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

generally used to get or set the value of an attribute of the object. Methods
are generaly used to perform an action.

The following expression is an example of calling a method on an object:
result = excel.CheckSpelling("aardvark")

By default, parameters are passed by value. For example, cells (1, 1)
actually calls a method and passes two parameters (1 and 1). Passing by
value simply sends the parameter values to Excel and areturn value comes
back. The parameter val ues are unchanged.

Some automation methods have parameters that are passed by reference.
The parameter’s value is changed by the automation server and a new value
for the parameter is passed back to VEE. For example, an ActiveX
instrument control might contain an automation method called by this
expression

passed = Scanner.GetReading (ByRef Reading)

where the method's return value for passed istrueif the getReading
worked or falseif it did not, and any other values arereturned in the ByRe
parameter Reading. You should initialize the variable Reading before
passing it to the function and have an output terminal on the Formula object
containing the expression so you can use any returned values.

The ByrRef keyword is supported in VEE, and the Function & Object
Browser displaysin itsinformation area the parameters passed using
ByRef. ByRef does not support al datatypes. See Table 13-4, “ Converting
from VEE Data Typesto Automation Scalar Data Typesin VEE 5 Execution
Mode,” on page 419.

Type libraries can provide enumerations that appear in the class area of
VEE'SFunction & Object Browser. Enumerations make using object
methods and properties easier. For instance, the window object in Excel has
awindowState property. The windowState property is of type
X1WindowState enumeration. There are three values for this enumeration:

x1Maximized (-4137)
x1Minimized (-4140)
x1Normal (-4143)

410 Chapter 13

Using the ActiveX
Object Browser

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

V EE supports enumerations, which allows you to use the following
expression when using object methods and properties:

Window.WindowState = x1Minimzed

The ActiveX Object Browser is part of the Function & Object Browser
that opens when you press fx on the toolbar. The browser configuration
changeswhen you select Type: ActiveX Objects. The browser letsyou
explore the properties, methods, and events that an ActiveX object provides.
ActiveX information appears here only if you selected automation or control
typelibraries (Device = ActiveX Automation References Of
ActiveX Control References). Figure 13-4 showsthe Function &
Object Browser With ActiveX information for the Access type library.

Function & Object Bri
Type: Library: Memhbers:
Operators [
Built-in Functions & CodeContextOhject
MATLAE Functions DIRECTLIb &' CurrentObjecttame
Lacal User Functions Effectlibrary & CurrentOhjectType
Impoarted User Functions FPAFILIb &' DoCmd
Remaote User Functions e & Forms —
iled Functions : & MenuBar
Ohjects ~| =& Parent
YEE Objects 1 BoundObjectFrame & Repors
Instruments 1 CheckBuox & Screen
1 ComboBox & ShortcutMenuBar
B CommandButtan & UserContraol
1 Contral & Visible
1 CustomContral =@ AccessErrar
1 DoCmd =& BuildCriteria
1 Form =& CloseCurrentDatabase
21 Grouplevel =& CodeDb
™1 _lmane LI =& CraateCnntrnl L'
FROFERTY Application As Application
read-only
Create GetFurmuIal pziciz SetFnrmuIal Close | Help

Figure 13-4. Using the ActiveX Object Browser

Chapter 13 411

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

When aLibrary nameis selected, the class areadisplays dispatch
interfaces (dispinterfaces) and enumerations that are available. For a
selected dispinterface, the available properties, methods, and events appear
in the Member area. For enumerations, the constants are listed. Figure 13-4
displays some of the functionality available for the Accesslibrary. The
selected comboBox dispinterface contains properties, a method, and many
eventsthat are listed in the Member area. Figure 13-5 shows the relationship
between entries in the browser’s classes and Members areas, including
their identifying icons:

Classes Members
Ed Properties
™ Dispinterfaces =& Methods
§ Events
£ Enumerations ® Constants

Figure 13-5. Elements Displayed in the Function & Object Browser

The browser’s information area (just above the buttons) displays a help
string associated with the property, method, event, or constant if this
information is provided by the automation object. This syntax contains the
object’s type information in the parameter list. Parameters surrounded by
square brackets [] are designated as optional. Some applications may not
provide these short help strings.

Typeinformation is provided for an ActiveX object’s properties, method
parameters, and return type. If no parameter type is specified, the default
typeisVT_VARIANT. In most cases, VEE automatically handles type
conversion for VT_VARIANT. See Table 13-1 and following for more
information about Automation datatype and VEE data Type conversion.

For a property, the browser displays type information about the property,
such as whether it is aread-only or write-only property and whether it isthe
default property. You can create a Formula object to perform a get or set of
that property. The following is an example of what the browser displaysin
the information area for a property:

DEFAULT PROPERTY Name as Text

412 Chapter 13

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

For amethod, the browser displaystypeinformation about each parameter in
the parameter list and the return value. Methods can aso be the default
member, so the browser also indicates this. You can create a Formula
object for amethod that is configured to call that method. The following is
an example of what the browser displays in the information areafor a
method:

METHOD Void SetData (vValue, vFormat)

For events, the browser displays the same type information as for a method.
However, the event handler associated with an event isusualy called by the
client application. In the case of controlling Access by automation, Access
calls the event handler UserFunction. In the case of using an ActiveX
control, the ActiveX control calls the event handler UserFunction.

Since your program or VEE does not call these callback event handlers, the
Create Formula buttonisgrayed out. You can only view information
about an event. The Function & Object Browser doesnot let you
create event-handler UserFunctions because events must be tied to a
particular ActiveX automation variable or an ActiveX control.

To create an event handler, go to the object menu of the appropriate
Declare Variable or ActiveX control. The following is an example
of what the browser displaysin the information areafor an event:

EVENT Void Click()

For constants in an enumeration, the browser displays the value of the
constant. The following is an example of what the browser displaysin the
information area for a constant:

CONSTANT tvwRootLines = 1

For constant values less than 0 and greater than 1024, VEE also displays the
hexadecimal value of the constant. This information appears as:

CONSTANT x1Normal = -4143 (#HFFFFEFD1)

Clicking the He 1p button opens the help file and topic associated with the
selected ActiveX object member if that information is provided by the
object. If noinformation isavailable, adialog box appears, indicating that no
help is available for the selected member. This help information is provided
by the application vendor and is not part of VEE Online Help.

Chapter 13 413

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Data Type Compatibility

ActiveX automation provides support for certain datatypes. This section
describes the type conversion that takes place between VEE data types and
ActiveX automation data types. Type conversion occurs automatically.

Table 13-1 indicates the automation data types that are supported and the
corresponding V EE 6 Execution Mode data type.

Table 13-1. Converting from Automation Scalar Data Types to VEE Data
Types in VEE 6 Execution Mode

Convert from Convert to VEE Notes
Automation Data Type Data Type
VT_EMPTY Text Text with empty string
(") is returned. Use
isVariantEmpty ()

to determine if variant
was of type VT_EMPTY

VT_NULL Text Text with empty string
(") is returned. Use

isVariantNull ()
to determine if variant
was of type VT_NULL

VT_UIl Ulnt8

VT I2 Int16

VT_l4 Int32

VT_R4 Real32

VT_R8 Real64

VT_CY Real64 8-byte fixed point integer

with 4 digits to right of
decimal is converted to
VEE Real64. Use
isVariantCurrenc
y () to determine if
variant was of type
VT_CY.

414 Chapter 13

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Table 13-1. Converting from Automation Scalar Data Types to VEE Data
Types in VEE 6 Execution Mode

Convert from Convert to VEE Notes
Automation Data Type Data Type

VT_DATE Real64 Days since 12/30/1899
converted to VEE's
representation of date/
time in seconds since
Jan 1, 0001.

VT_BSTR Text

VT_DISPATCH Object

VT_ERROR Int32 An Int32 with value of
the scode is returned.
Use
isVariantError ()
to determine if variant
was of type VT_ERROR.

VT_BOOL Int16 Use
isvariantBool ()
to determine if variant
was of type VT_BOOL.

VT_VARIANT * Only valid in ByRef case
(VT_VARIANT | BYREF)
In this case, the variant
points to another variant.
VEE creates a container
based on the embedded
variant's type.

VT_UNKNOWN Object

Chapter 13 415

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Table 13-2 shows the automation data types that are supported and the
corresponding VEE 5 Execution M ode data type.

Table 13-2. Converting from Automation Scalar Data Types to VEE Data
Types in VEE 5 Execution Mode

Convert from Convert to VEE Notes
Automation Data Type Data Type
VT_EMPTY Text (empty string)
VT_NULL Text (empty string)
VT_Ull <generates error> unsigned char
VT_12 Int32
VT_l4 Int32
VT_R4 Real64
VT_RS8 Real64
VT_CY Real64 8-byte fixed point integer

with 4 digits to right of
decimal is converted to
VEE Real64.

VT_DATE Real64 Days since 12/30/1899
converted to VEE's
representation of date/
time in seconds since

Jan. 1, 0001.
VT_BSTR Text
VT_DISPATCH Object
VT_ERROR <generates error>
VT_BOOL Int32
VT_VARIANT * Only valid in ByRef case

(VT_VARIANT | BYREF)
In this case, the variant
points to another variant.
VEE creates a container
based on the embedded
variant's type.

416 Chapter 13

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Table 13-2. Converting from Automation Scalar Data Types to VEE Data
Types in VEE 5 Execution Mode

Convert from Convert to VEE Notes
Automation Data Type Data Type
VT_UNKNOWN Object

Table 13-3 indicates the VEE 6 Execution Mode data types supported and
the corresponding automation data types. Unlike the inverse mappings
shown in the previous table, these are not fixed one-to-one mappings. Most
automation server objects are capable of coercing datato the required data

type.

For example, if the target property isalong integer, such asthe X coordinate
of apoint, you can pass not only an Int 32 which isthe exact match, but aso
areal Or even atext string, aslong asit isastring of digits. However, in
case of an array, which is always passed as a VARIANT, acceptable data
type and array shape depends on the implementation of the target COM
object.

Table 13-3. Converting from VEE Data Types to Automation Scalar Data
Types in VEE 6 Execution Mode

Convert from VEE | Convertto Automation Notes
Data Type Data Type

Uint8 VT _Ull

Int16 VT_I2

Int32 VT_l4

Real32 VT _R4

Real64 VT_RS8

Text VT_BSTR

<scalar of type *> VT_BOOL Use
asVariantBool () on
any scalar VEE data type
that can be cast to an
Int16, (UInt8, Int16, Int32,
Real32, Real64, Text).

Chapter 13 417

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Table 13-3. Converting from VEE Data Types to Automation Scalar Data

Types in VEE 6 Execution Mode

Convert from VEE
Data Type

Convert to Automation
Data Type

Notes

<scalar of type *>

VT_CY

Use
asVariantCurrency
() on any scalar VEE
data type that can be cast
to a Real64 (UInt8, Int16,
Int32, Real32, Real64,
Text).

<scalar of type *>

VT_DATE

Use

asVariantDate () on
any scalar VEE data type
that can be castto a
Real64 (UInt8, Int16,
Int32, Real32, Real64,
Text).

<scalar of type *>

VT_ERROR

Use asVariantError() on
any VEE data type that
can be cast to an Int32
(UInt8, Int16, Int32,
Real32, Real64, Text).
Value of Int32 is assigned
as the scode (error
number) for the error.

Variant

<scalar of variant type *>

The current type of the
VEE container is
converted to the
appropriate variant type.
For instance, if the Variant
container holds a VEE
Int32, VEE will create a
variant of type VT_l4.

Object

VT_DISPATCH

If VEE holds an IDispatch
pointer to the object.

Object

VT_UNKNOWN

If VEE has an IUnknown
pointer but not an
IDispatch pointer.

418

Chapter 13

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Table 13-4 indicates the VEE 5 Execution M ode data types supported and
the corresponding automation data types.

Table 13-4. Converting from VEE Data Types to Automation Scalar Data
Types in VEE 5 Execution Mode

Convertfrom VEE | Convertto Automation Notes
Data Type Data Type

Int32 VT_l4

Real64 VT_R8

Text VT_BSTR

Object VT_DISPATCH If VEE holds an IDispatch
pointer to the object.

Object VT_UNKNOWN If VEE has an IlUnknown
pointer but not an
IDispatch pointer.

Table 13-5 shows array conversions from Automation data type to VEE 6
Execution Mode data type.

Table 13-5. Converting from Automation Array Data Types to VEE Data
Types in VEE 6 Execution Mode

Convert from Convert to VEE Notes

Automation Data Type Data Type

VT_Ull Uint8 Array

VT_I2 Int16 Array

VT_l4 Int32 Array

VT_RA4 Real32 Array

VT_RS8 Real64 Array

VT_BSTR Text Array

VT_BOOL Int16 Array UseisVariantBool ()
to determine if variant
array was of type
VT_BOOL.

Chapter 13

419

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Table 13-5. Converting from Automation Array Data Types to VEE Data
Types in VEE 6 Execution Mode

Convert from Convert to VEE Notes
Automation Data Type Data Type
VT_CY Real64 Array 8-byte fixed point integer

with 4 digits to right of
decimal is converted to
VEE Real64. Use
isVariantCurrency (
) to determine if variant
array was of type
VT_CY.

VT_DATE Real64 Array Days since 12/30/1899
converted to VEE’s
representation of date/
time in seconds since
Jan. 1, 0001. Use
isVariantDate() to
determine if variant is of
type VT_DATE.

VT_ERROR Int32 Array An Int32 with value of
the scode is returned.
Use isVariantError() to
determine if variant array
was of type VT_ERROR.

VT_VARIANT <array of If the array elements are
homogeneoustype | all of the same
OR arecord> fundamental data type,

VEE creates an array of
the type indicated by the
scalar mapping in Table
13-1. A VEE record is
created for a variant
containing a mixed data
type array.

VT_DISPATCH N/A Arrays of type Object not
supported.

420 Chapter 13

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Table 13-5. Converting from Automation Array Data Types to VEE Data
Types in VEE 6 Execution Mode

Convert from
Automation Data Type

Convert to VEE
Data Type

Notes

VT_UNKNOWN

N/A

Arrays of type Object not
supported.

Table 13-6 shows array conversions from Automation data type to VEE 5

Execution Mode data type.

Table 13-6. Converting from Automation Array Data Types to VEE Data
Types in VEE 5 Execution Mode

Convert from Convert to VEE Notes

Automation Data Type Data Type

VT_UI1 Int32 Array

VT_I2 Int32 Array

VT_l4 Int32 Array

VT_R4 Real64 Array

VT_RS8 Real64 Array

VT_BSTR Text Array

VT_BOOL Int32 Array

VT_CY Real64 Array 8-byte fixed point
integer with 4 digits to
right of decimal is
converted to VEE
Real64.

VT_DATE Real64 Array Days since 12/30/1899
converted to VEE'’s
representation of date/
time in seconds since
Jan. 1, 0001.

VT_ERROR <generates error>

Chapter 13

421

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Table 13-6. Converting from Automation Array Data Types to VEE Data
Types in VEE 5 Execution Mode

Convert from Convert to VEE Notes
Automation Data Type Data Type
VT_VARIANT Record A VEE record is created

for a variant containing
a mixed data type array.

VT_DISPATCH N/A Arrays of type Object
not supported.

VT_UNKNOWN N/A Arrays of type Object
not supported.

Table 13-7 shows Automation Data Type modifiers.

Table 13-7. Automation Data Type Modifiers

Automation VEE Type Notes:
Type
Modifiers
VT_BYREF Either scalar or array of For instance,
the type indicated by the VT_BYREF | VT_BSTR
scalar mapping table would generate a VEE Text
above. container. In the case of a

scalar VT_VARIANT, the
variant points to another
variant. VEE creates a
container based on the
data type of the embedded
variant.

422 Chapter 13

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Deleting Automation Objects

Automation objects are responsible for deleting themselves when VEE
releases its reference to them. When VEE no longer holds areference to an
automation abject, it tellsthe object that the reference has been released. The
object then deletes itself unless other ActiveX automation controller
applications are still using it. VEE releases references to automation objects
in the following cases:

B TheDelete Variable oObject isexecuted on the automation object’s
variable name. However, VEE may also have other pointers to these
Automation objects. See "Delete Variable" in VEE Online Help for more
information.

B Delete Variables at Prerunisenabledinbefault
Preferences and you restart the program.

B VEE exits, or the commands File = New Of File = Open are used.

Handling Automation Object Events

Automation objects can generate events. VEE, as an automation controller,
lets you catch events via UserFunctions. You can create event-handler
UserFunctions for an automation object that generates events if you have
declared a variable of the specific type and have enabled its events. You can
create an event-handler UserFunction for each event an object can generate.

You can create an event-handler UserFunction when you declare avariable
for the object and enable its events (if they are available).

1. After declaring the variable and specifying its type, including enabling
events, opentheDeclare Variable object menu.

2. Intheobject menu, click Create Event Handler... TheCreate
Event Handler UserFunction browser appears. See Figure 13-6

TheMember arealistsall of the eventsavailable for the dispatch interface
listed inthe class area.

Chapter 13 423

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Create Event Handler UserFunction

Type: Librany: Member:
: j : [sierpdate B
BeforelUpdate
F Change
F Click
#F DhiClick
. £ Enter
Class: =
| ComboBox [NIEREEREEIE
F KeyDownh
F KeyPress
YRR [
EVEMT WT_HRESULT AfterUpdate()
"combo_AfterUpdate” UserFunction will be created
Create Handler Close | Help

Figure 13-6. Create Event Handler UserFunction browser
3. Click an event name to select it.

When you select an event, the browser information area presents event
details and the status area shows the UserFunction title VEE will create.
Press the He1p button to get information about using the event. Not all
events have online help asthe library vendor is responsible for providing
it. Online help for eventsis not part of VEE Online Help.

4, Click create Handler. The new UserFunction window appears.
If you open this dialog box again to create another event handler, you will
notice the icons change color next to events with existing handlers.

Each new event-handler UserFunction is empty except for any required
inputs or outputs. You must program it to handle the event appropriately.
To edit an existing event, inthe beclare Variable object menu, click
Edit Event Handler...

Events are tied to the declared variable's name. The UserFunction title
combines the variable name with the event name. For example, if you
declared a variable named combo and specified itstype as

424 Chapter 13

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Objects

Access . ComboBox you could create event-handler UserFunctions with
names such as:

combo_AfterUpdate
combo_Change
combo DblClick
combo_KeyDown

Events are callback functions. You must program the generated
UserFunctions (the callback functions) to handle each event appropriately.
If the automation object generates an event, it calls the related UserFunction
to handle the event. Automation objects sometimes expect a return value
from VEE when they fire an event. If so, you must program the
UserFunction to return avalue.

When the object expects areturn value, it waits until VEE provides this
return value. You should write an event-handler UserFunction to work
quickly, since both VEE and the automation server, such as Access, wait
until the event-handler UserFunction returns.

Since the automation server waits until the event-handler UserFunction
returns, the UserFunction is executed in non-timeslicing mode. That is, the
UserFunction runs to completion without timeslicing with the rest of the
VEE program. Because it is not timeslicing, breakpoints do not work in an
event-handler UserFunction. Also, errors do not stop VEE. Errorsareturned
into Cautions and execution continues.

Chapter 13 425

Note

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Controls

Using ActiveX Automation Controls

Make sure VEE is set to VEE 5 or VEE 6 Execution Mode (in Default
Preferences) to enable ActiveX support. See “Using ActiveX
Automation in VEE” on page 401 for more information about ActiveX
support.

VEE does not support all ActiveX controls. If acontrol isincompatible with
VEE, an error may occur when you add the control to your program or while
you are using the control. Controls that are known to not work properly are

listed in VEE Online Help.

Selecting ActiveX Controls

Before you can use ActiveX controlsin VEE, you need to inform VEE
which ActiveX controls you want to use. Click bevice = ActiveX
Control References... Theresulting ActiveX Control References
dialog box lists the available control type libraries registered by the
Windows Registry. Figure 13-7 shows the dialog box with several selected
controls.

426 Chapter 13

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Controls

Control Feferences

Renistered Controls:

[] Acrobat Control for Activel
[IMarquee Control Library
I Microsoft Activel Plugin cancel
Microsoft Calendar Control 8.0
Micrasoft Chart Contral

I Micrasoft Comm Control 5.0
Micrasoft Commoan Dialog Contral 5.0 Browse...
[IMicrosoft Data Bound Grid Control
[IMicrasoft Data Bound List Controls 5.0
[IMicrosoft FlexGrid Contral 5.0

[Micrasoft HTML Intrinsic Controls
hicrosoft Internet Transfer Control
Microsoft MAPI Controls 5.0
[IMicrosoft Masked Edit Contral 5.0
[Microsoft Multimedia Control 5.0
[IMicrosoft PictureClip Control 5.0
[IMicrosoft RemoteData Cantrol 2.0

-
[l ¥ RN A Mliad T ol oo andead £ 0 _I

| »

ek

oK

Help

5.0

- Microsoft Internet Transfer Contral 5.0
Location: CONINMNTSystem3ZMSINET.OC

Figure 13-7. Selecting ActiveX Controls

Your list is probably different depending on the applications or controls you
have installed. Controls can be installed individually or as part of other
application installations. When you highlight a control name, its location
appearsin the dialog box status area.

When you find the control you want to use, click the check box by the
control name (or double-click the name itself) so a check mark appears.
Then, click ox to load them into memory for usein VEE and to search for
their object classes, dispatch interfaces, and exported events. You can select
multiple controls, but you should select only the ones you plan to use since
selected libraries use memory.

If you know a control type library exists for acontrol, but it does not appear
inthelist, it ispossible the library did not get registered during its
installation. Press the Browse button to find the type library missing from
the list. When you locate and open the type library file, VEE will attempt to
register the type library and add it to the list.

Chapter 13 427

Note

Differences in the
ActiveX Control
Host

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Controls

Adding a Control to VEE

Adding a control to an VEE program is similar to adding any other object.
After you select the ActiveX control(s), as explained previously, you can add
them to your program. Click Device = ActiveX Controls toview a
cascading menu listing the selected controls. See Figure 13-8 for an
example.

Farmula

Function & Object Browser Chrl+l
UzerObject

Comparatar

Activer Automation References. ..
Activex Control References. ..

Active Controle MaPIMezzages
MAPISeszion
Inet
CommanDialog
MSChart
Calendar

Figure 13-8. Adding ActiveX Controls from the Device Menu

In Figure 13-7 and Figure 13-8, five controls are selected in the ActiveX
Control References dialog box, but six appear inthe bevice =
ActiveX Controls cascading menu. It isnormal for some selectionsto
result in more than one ActiveX control being added to the resulting menu.

Select a control and place the resulting object in adetail view inthe VEE
work area. You can place controlsin any context — Main, UserObject, or
UserFunction. You can delete controls by selecting cut from their object
menu or double-clicking the object's context menu button. See Figure 13-9.

ActiveX controls are different from any other VEE object. Unlike al other
VEE objects, ActiveX controls have no input or output pins nor do they have
any sequence input or output pins. Controls are not data flow oriented.

428 Chapter 13

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Controls

To give you access to acontrol that is similar to the access available to other
objects, VEE creates a special container in the program that is the host for
the control. The container also gives you access to the control’s specific
properties built into it by the control’s developers. Regardless of the
combined features, we refer to these as ActiveX controls.

— Calendar: Calendari F
Eestare l I I
= | 1998 ~
Move
Size Thu | Fri | Sat
Minimnize e 3 4
Clone H 10 11
BEpaEE g5 |17 |18
Host Object E— Help S e
Properties and Help — Properties ma—" 5
Diezcription
Aodd Termira
ActiveXX Control Dlatz Tamtiel
Properties and Help —— Cariral Prapetties

Edit Event Handler...
Create Event Handler...

Cut

Figure 13-9. Accessing Properties and Help in an ActiveX Control

Some differences in the object menu follow. The properties and
Control Properties menu items provide accessto two different sets of
properties. The host container’s properties are separate from the control’s
properties. To see the typica properties associated with VEE objects, in this
case the host container, click Properties. To view and changethe ActiveX
control’s properties that are provided by the control’s developer, click
Control Properties.

The Help button on the control’s Properties dialog box opensthe online
help for that control if the developer provided one. The object menu’'sHelp
item opens the VEE Online Help topic for the host container. create
Event Handler...and Edit Event Handler... provide the same
functionality as described for ActiveX automation objectsin “Handling
Automation Object Events’ on page 423.

Chapter 13 429

Using the Assigned
Local Variable

Declaring a Global
Variable for a
Control

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Controls

Using an ActiveX Control in VEE

When you add a control to the VEE work area, the control appears with an
assigned local variable name initstitle bar. You can change the assigned
variable by double-clicking the control’stitle bar to get the Activex
Control Properties diaog box. Onthe General tab, change the value
beside Name: .

Since the control has no pins to connect with lines to other objectsin your
program, you must manipulate the control using expressionsin Formula
objects that refer to the control by its variable name. These expressions must
appear in the same context asthe control, since the control’svariable nameis
scoped "local to context”.

If you add a Cadendar control to your program, it is assigned the local
variable name calendar. Thetitle bar contains calendar. To interact with
the control, add a Formula object that isin the same context asthe Calendar
control. The following examples demonstrate setting a property, getting a
property and calling amethod on the ActiveX control referenced by the VEE
local variable called calendar:

Calendar.Day = 24;
Month = Calendar.Month;
Calendar.AboutBox ()

If you want the variable name to be global, declare a new variable name
using Declare Variable (Data = Variable = Declare Variable).
Thisissimilar to the variable declaration described in “ Declaring
Automation Object Variables’ on page 404. Since the control’s variable
name already exists, such as calendar, you cannot declare it as global as
VEE does not allow such conflicts. A common naming convention isto
adapt the local variable name (asin g localName), resulting in

g calendar.

InDeclare Variable, enter the new variable name, set Scope toGlobal
and set Type: to Object. You do not need to check specify Object
Type to specify the particular Library and Class. However, if you do so,
VEE will do type checking automatically to assure that the Library and
Class areassigned only to the declared variable.

430 Chapter 13

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Controls

After declaring the global variable, use a Formula expression to set the
control’slocal variable name (such as calendar) equal to the declared
variable name (such asg_calendar). It isimportant to use the SET
keyword, as shown in this expression:

SET g calendar = Calendar

Manipulating ActiveX Controls

Setting and getting properties, calling methods and handling events for an
ActiveX control uses the same mechanisms described for ActiveX
automation objectsin “Manipulating Automation Objects’ on page 408
and in “Handling Automation Object Events’ on page 423.

Although VEE contains ActiveX controlsin host objects so they are
accessible, the control’s behavior is slightly different when a program runs.
Basically, controls are viewable in only one place at atime— either the detail
view or panel view.

Asan example, suppose acontrol isadded to a program’s detail view and the
program dynamically displays a panel on which the control appears using
Show Panel on Execute OfF showPanel (). Thecontrol isblanked out in
the detail view until the panel closes. When the panel closes, the control
reappears in the detail view.

Chapter 13 431

Using ActiveX Automation Objects and Controls
Using ActiveX Automation Controls

432 Chapter 13

14

Using the Sequencer Object

Using the Sequencer Object

This chapter gives guidelines for using the Sequencer object, including:

B The Sequencer Object
B Using the Sequencer Object

434 Chapter 14

Using the Sequencer Object
The Sequencer Object

The Sequencer Object

The Sequencer Object isin the Device menu. You should understand several
topics covered in this and other manuals to use the sequencer object
effectively. These topicsinclude:

B Instrument 1/O Operations (see Chapter 2, "Instrument Control
Fundamental s

B Transactions (see Chapter 4, "Using Transaction 1/0").
B UserObjects (see “Propagation in UserObjects’ on page 267)
B Records and DataSets (see Chapter 11, "Using Records and DataSets")

B UserFunctions (see Chapter 12, "User-Defined Functions/Libraries")

What isthe Sequencer Object?

The sequencer object controls the order of a series of tests. It does this by
executing atest, then comparing the results of each test to a specification and
using the comparison to determine the next action.

The sequencer object executes a series of predetermined sequence
transactions. Each transaction evaluates a VEE expression, which may
contain calls to UserFunctions, Compiled Functions, Remote Functions, or
other VEE functions. The transaction compares the value returned by that
expression to an existing test specification. Depending on whether the test
passes or fails, the transaction eval uates different expressions and selects the
next transaction to be executed. You specify transaction behavior in the
Sequence Transaction dialog box that appears when you click on a
transaction.

Transactions may log their results to the L.og output pin or to a
UserFunction, Compiled Function, or Remote Function. Results can be read
as they occur or collected in a Log Record, or both. Logging actions are
specified in the Sequencer Properties dialog box on the Logging tab.

Chapter 14 435

Using the Sequencer Object
The Sequencer Object

L ogging Test Results

For some situations, you must be careful about collecting Sequencer log
recordsinto an array of records. Asexplained in Chapter 11, "Using Records
and DataSets', to build an array of records all array elements of agivenfield
must be of the same type, shape, and size. For arecord of records, asis
generated by the Log output terminal of the sequencer, the type, shape,
and size of each field must match for sub-records aswell.

For example, suppose you are collecting the logged results of severa
executions of a sequencer, either by using the collector to build an
array or by sending the resultsto a DataSet. In either case, if any of the
logged vaues of agiven transaction change type, shape, or size between
executions of the sequencer, an error occurs. The error is generated by the
Collector Of To DataSet Object because the array of records cannot be
built.

This situation can easily occur if atransaction is not executed on every
execution of the Sequencer, such asan ENABLED IF condition specified.
If the transaction is not executed, alog record is still generated but the NAME
and DESCRIPTION fieldsare empty strings, and all the other fields contain a
Real scalar value of zero.

If the same transaction is executed on a subsequent execution of the
Sequencer, and logs aresult that is not a Real scalar, an error occurs. (You
might want to consider, in this situation, writing each logged record out to a
filein container format with To File instead of using To DataSet.)

An error can also occur if your tests return arrays of different sizes, such as
an array of the failed data points. In this case, you might want to design the
test to pad the array to always return the same size array.

436 Chapter 14

Using the Sequencer Object
Using the Sequencer Object

Using the Sequencer Object

Four examples using the Ssequencer object follow, including:

B Example: Sequencer Transactions
B Example: Logging Test Results

B Example: Logging to a DataSet
B Example: Bin Sort

Example: Sequencer Transactions

The sequencer object in its open view shows alist of sequence
transactions. Each transaction is similar to the other types of transactions
shown in Chapter 4, "Using Transaction 1/O". The program in Figure 14-1
shows how the sequencer usestransactionsto execute expressions and call
functions.

Figure 14-1 does not show two UserFunctionsin the background: myRand1,
which adds a random number from 0 to 1 to the value of itsinput, and
myRand2, which adds a random number from 0 to 100 to itsinput. You see
the calls to these UserFunctions when you expand the transactions. See
Chapter 12, "User-Defined Functions/Libraries' for further information on
creating and using UserFunctions.

—|Reald4] = Sequencer =
i Y al[estt1==(128==15 Retum
test? 1 <= (26) == 51
= TE}{I = testd finish (simple EXEC trans.)
= Double-Click to Add Transaction =

Cianel 1

— Lag Recard =

= Return value =

Figure 14-1. Example: Sequencer Transactions

Chapter 14 437

Note

Using the Sequencer Object
Using the Sequencer Object

When you click atransaction, adialog box "expands" the transaction so you
can view and edit it. The dialog box in Figure 14-2 showsthe first
transaction, test1:

Sequence Transaction

TesT | B | [EnesieD =

SPECNOMINAL: [rzs | [rmanoe =] |i =1 =5
FUNCTION: [ryRand1() | LOGGING ENABLED |

FPass | [THEN CONTINUELZ]

FFAL | [THEN CONTNUELS]

DESCRIFTICN: |
OK | Cancell

Figure 14-2. testl Sequence Transaction Dialog Box

A sequence transaction can be either a TEST transaction or an EXEC
transaction. In this transaction, the type is TEST :, the namefield istest1,
the nominal specificationisi.25, aRANGE: specification is used, and the
rangeisi <= ... <= 1.5.

Only values from 1 to 1.5 will pass the test. The expression myRand1 (2)
calls the UserFunction, using the value on the a input terminal of the
Sequencer asitsinput parameter.

The transaction has logging enabled so alocal variable named Test1 is
automatically created to contain the log record of the results of thistest. This
log record will also be available as part of the Log output terminal. The IF
pass and IF FAIL conditionsare both setto THEN CONTINUE. This means
that, pass or fail, when test1 isdonethe next transaction, test2, is
executed.

ThebescrIipTION field isacomment areafor this test.

The sPEC NOMINAL valueisnot used for RANGE Or LIMIT tests except for
"documentation” purposes. However, if you use tests based on TOLERANCE
or $TOLERANCE values, the tolerance will be calcul ated relative to the SPEC
NOMINAL value.

438 Chapter 14

Using the Sequencer Object
Using the Sequencer Object

The second transaction, test2, shown in Figure 14-3, isalso a TEST
transaction.

Sequence Transaction

TesT | B | [EneBLED]

SPEC NOMINAL: 25 [rencE: =] fi = =
FUNCTION: fryRand26% | LOGGING ENABLED |

FPass | [THEN conTNUELS]

FraL | [THEN ConTinuE]

DESCRIFTION: |
OK | Cancell

Figure 14-3. test2 Sequence Transaction Dialog Box

This second test is similar to the first. The UserFunction myRand2 is called

with the expression myrRand2 (a) . The resulting value istested to seeif it is
in the range 1 through 51, with a nominal specification of 26. Again, pass or
fail, the sequencer continues to the next transaction.

The third transaction is an EXEC transaction, as shown in Figure 14-4:

Sequence Transaction

EKEC:lW [ENABLED =
FUNCTION: i LGGGINE BIEARIED |

| THEN RETURN: =] |B

DESCRIPTION: [isimple EXEC trans.)

OK | Cancell

Figure 14-4. EXEC Transaction Dialog Box

An EXEC transaction, unlike a TEST transaction, performs no comparison
of the function result to a specification or range. EXEC transactions are used
to perform an action that does not require a pass/fail test.

Chapter 14 439

Using the Sequencer Object
Using the Sequencer Object

For example, an EXEC transaction could call aroutine that sets up an
externa configuration before a TEST transaction is performed, or it could
execute a power down procedure after a series of tests. (An EXEC
transaction is a shortcut for specifying an "always pass’ test condition.)

In this example, the transaction named £inish returnsthe value of B to
the Return output terminal of the sequencer object. Since no test is
performed, logging does not occur for an EXEC transaction.

You can use the DEscrIPTION field to briefly describe any transaction.

When you run the program, the three transactions are executed in sequence
as shown in Figure 14-5.

—|Reald| _
=| Seguencer =]

1
- |_1—| A testl! 1 ==(1.28)==1.4 Return

testd 1 == (26) == 51

- Text | 4 finish (simple EXEC trans.)
= Double-Click to Add Transaction =
Cionel 1

= Log Record =]
J{{"testl™, 1.396, 1},{"test2",85.05, 0}}

= AIphaN-umeric =
1 Dionel

Figure 14-5. Running the Program

The logged test results are output on the Log output terminal and displayed.
The results are logged as the Record data type, arecord of records. In this
case, test1 has passed with avaueof 1.396 and test2 hasfailed with a
valueof 85.05. Thethird transaction returns the value on the B input, which
isthe string Done ! .

Each transaction that has logging enabled creates alog record named as the
transaction name. In this example, logging is enabled for the first two tests
so locd variables named Test1 and Test2 contain the log records for those
transactions.

Thefields contained in the log records are defined in the Properties
dialog box. To access the logging configuration, click Properties inthe

440 Chapter 14

Using the Sequencer Object
Using the Sequencer Object

Sequencer object menu, then click the Logging tab. By default, log
records contain Name, Result, and Pass fields.

The Test1 and Test2 local variable names can be used in any expression
within the sequencer to access the results of the current or a previously
executed transaction. For example, Test 3 could have called afunction with
Testl.Result asaparameter to pass the result of the first test. Or
Test2.Pass could be used as an expression that would evaluate to 1 if
Test2 passed, or o if Test2 failed.

Thereisone morelocal variable, thisTest, available to access the logging
records. Thevalue of thisTest isawaysthe same as the logging record
for the currently executing transaction. This allows you to write transaction
expressions that can be used in many transactions without having to include
the name of each transaction.

The data structure produced by the Log output terminal on the sequencer
isarecord of records, as shown in Figure 14-6.

Log.Testl.Results

Result \J

Name

Log Test1l Test2

Figure 14-6. A Logged Record of Records

The record produced by the Log output pin contains afield for each
transaction that has logging enabled, Test1 and Test2 in this example.
Each of thesefieldsisthelog record for the specified transaction, containing
the fields Name, Result, and Pass.

This record of records is available on the L.og output pin and can be used by
other objects by using the record "dot" syntax. For example, the expression
Log.Test1.Result would, inthiscase, returnthevalue 1.396, as shown

Chapter 14 441

Using the Sequencer Object
Using the Sequencer Object

in Figure 14-5. Likewise, Log. Test1.Name would return test1 and
Log.Test1.Pass would return 1.

The datalogged on the L.og output pin is aways the data from the last
execution of each transaction. If you want to log the results of every
execution of each transaction, set Logging Mode t0 Log Each
Transaction To: Onthe Logging tab of the Sequencer Properties
dialog box. This option calls the specified function (or expression) at the
completion of every transaction.

This option can also be useful if you want to log test resultsto afile or
printer as they happen, rather than waiting until the sequencer has
completed. Thelocal variable thisTest can be used as a parameter to the
logging function to pass the log record of the transaction that has just
completed.

Example: Logging Test Results

Figure 14-7 shows another example of logging test results, where an iterator
causes the sequencer to repesat the tests over and over and to log the
results.

— Fort-munt r
4 1
= Sequencer =]
test! 1 ==(1.28)==1.4 Return
test? 1 == (26 a1
= Double-Click to Add Transaction =
Log -
CollectorI
. 1
= Lag Record = -
({"testl”, 1.396, l},{"testz", §5.05, 0}} 170 File|

{{"testl”, 1.353, l},{"testZ”, 45.66, 1)}
{{"testl™, 1.319, 1},{"test2”, 89.64, 0}}
i Data | {{"testl™, 1.016, 1},{"testz", 59.41, 0}}

Figure 14-7. Example: Logging Test Results

442 Chapter 14

Using the Sequencer Object
Using the Sequencer Object

Inthisexample, the For Count object causesthe sequencer to executeits
series of tests (test1 and test2 of the previous example) four times. For
example, if four "widgets' are being tested on an assembly line, each
execution of the sequencer tests one widget.

The resulting series of records from the Log output terminal is collected by
the collector and displayed as an array of records. You can use the To
File object to output thisarray to afileusing awrRITE CONTAINER I/O
transaction, or you can use a DataSet.

You can think of the output of the collector inthisexampleasan array of
records of records, as Figure 14-8 illustrates.

Log[*].Test1l.Result

Pass
Result y
Name
Log [0] Testl Test2
Log[1]
Log[2]
Log[3]

Figure 14-8. A Logged Array of Records of Records

Each array element (Log [0], Log [1], efc.) represents a single iteration of
the sequencer and is arecord of records. The logged output is available for
analysisin expressions. Inthiscase, Log [*] . Test1.Result isa"core
sample' from the array. In fact, Log [*] . Test1.Result would return an
array of values (1.396, 1.353, 1.319, and 1.016 for the example resultsin
Figure 14-5).

Chapter 14 443

Note

Using the Sequencer Object
Using the Sequencer Object

Thelogged array is not athree-dimensional array but an array of records of
records. Thisisimportant because the individual fields of arecord can be of
differing datatypes. While the Name field is Text, theresult field could be
aWaveform, etc. Also, theTest2 . Result field could be aWaveform while
the Test1.Result field isaReal value.

However, each individual field must be of a consistent data type throughout
the array. For example, thefield Test1.Result cannot be aReal valuefor
Log[0] and aWaveform for Log[1].

The example in Figure 14-9 extends this example to 10 iterations of the
Sequencer and adds some analysis of the logged data. In Figure 14-9, the
expression log [*] .testl.result inthe Formula object returnsa
10-element Real Array that containsthe resultsof test1. Thisarray isthen
statistically analyzed by means of themin (x), max (x) , mean (x), and
sdev (x) Objects.

= For Count =]
[110 i
— Sequencer [
tegt! 1 == (1.28) == 1.5 Return
test2 1 == (26) == 51

= Double-Click to Add Transaction =

Log T

- _ — hin \Talue F
Caollector rringd |—| 1.015
- — Max\-falue F
= Formula = max(s |—| 1 896
| testl. It -
log | [lool]testl.resu Result _ — WEEvEm e
- mean(s) I—I 1.841
—~| stdpev |

soev(y) |—| 0.2971

Figure 14-9. Analyzing the Logged Test Results

444 Chapter 14

Using the Sequencer Object
Using the Sequencer Object

Thisexampleissaved inthe filemanual44 .vee inthe examples
directory.

Example: Logging to a DataSet

You can use a DataSet to store logged test results. In the program in Figure
14-10, the sequencer object Log output terminal is connected to the To
DataSet Object.

= For Count =
10)
—| Sequencer =] =] To Data Set =]
testl 1 =={1.25 =15 RIS | To DataSet: trmpirryData
test? 1 == (26) == 51 e
= Double-Click to Add Transaction = oG |_j_| ¥ Clear File At PreRun
- Fram Data Get = - =l Minvalue |«
ming 1.152
From DataSet: itrnpirryData _()I_| -
Get records: All Rec

Search Specifier. (eq: Rec A=10) - ZIMILI
[Rectest! pass AND Rec test2 pass maxi) I—l 1485
- — Mean-VaIue F
= Formula = mean(|—| 1.318
Fec[®].test! result -
=] swDpev |«

- sdevi) |—| 0.2357

Figure 14-10. Example: Logging to a DataSet

When the For Count object isfinished, it causesthe From DataSet
object to retrieve the stored DataSet (myDataSet). From DataSet iS
configured to retrieve ALL records from myDataSet but to test each record
against the condition Rec.testl.pass AND Rec.test2.pass.A
particular record isretrieved only if both test1 and test2 passed for that
record.

Of theretrieved records, if any, the expression Rec [*] .testl.result
returnsall of the test1.result record fields, which are then statistically

Chapter 14 445

Using the Sequencer Object
Using the Sequencer Object

analyzed. (This program will error if none of the records satisfy the
eXpression Rec.testl.pass AND Rec.test2.pass.)

Thisexampleissaved in the file manual4s.vee inthe examples
directory.

Example: Bin Sort

The next example measures the resistance value of carbon resistors.

Previoudly, carbon resistors were manufactured by arather imprecise
process, then tested, sorted, and marked. The standard resistance values
(such as 2200, 2702, and 3302) were chosen to overlap at 10% tolerance
so each resistor could be used. If the resistor value is more than 10% greater
than 220¢, it can be labeled as a 270Q ohm resistor, €etc.

Figure 14-11 shows a program in which the Ssequencer calsa
UserFunction, which returns aresistance value. The Sequencer thenrunsa
series of tests to determine which nominal resistance value and percent
tolerance the resistor satisfies. Thisisa"bin sort" problem. That is, the
sequencer returns a result that identifies the bin in which to put the resistor.

One of the advantages of using the sequencer to call aUserFunctionisthat
different UserFunctions can be substituted. For this example, we use a
UserFunction (simResist) that returns arandom resistance value in the
expected range during development. You could substitute another
UserFunction that executes Instrument 1/0 and returns real resistance values.

The simplest solution to the problem is to use an extended series of sequence
transactions, each testing the resistance value against anominal value and
tolerance.

446 Chapter 14

Using the Sequencer Object
Using the Sequencer Object

To String

= Sequencer =
test2 6% -5%
Return |

testd (3307 +10% -10% — . =
testd (270) +2% -2% | Bin =art |
tests (270) +5% -5% 330 Ohm, 2%
tests (270) +10% -10%

test? (220) +2% -2%

tests (220) +5% -5%
testa (220) +10% -10% . Break I
Error Condition

Figure 14-11. Bin Sort Example

L1

In this example, the first sequence transaction (test1) callsthe
UserFunction simResist with the expression simresist (). (This
UserFunction requires no inputs). Figure 14-12 shows the first sequence
transaction.

Sequence Transaction

TesT | [EEEl | [EnsBLED]

SPEC NOMINAL - [330 |%TOLERANCE: =] + |2 % - ki
FUNCTION: [simResist) LOGGING ENABLED |

IF PASS | | THEN RETURN: =] f350 2]
IF FAIL | [THEN CONTINUE =]

DESCRIPTION: |

0K | Cancell

Figure 14-12. testl Transaction

test1 teststo seeif the resistance value returned by simresist iswithin
+2% of the nominal value, 330 If itis, the two-element Real array [330
21 isreturned on the Return output terminal, and the To string object
convertsthisvalueto the string 330 ohm, 2%. If thetest fails, the
Sequencer goesto the next test.

Chapter 14 447

Note

Using the Sequencer Object
Using the Sequencer Object

The second transaction, test2, workslike test1 except that instead of
calling simResist again the FuNcTION field contains the expression
testl.result. Figure 14-13 shows the second sequence transaction.

Sequence Transaction

TesT| BEE | [EnABLED o]

SPEC NOMINAL: [330 [%TOLERANCE: =] + |5 % - |5 g
FUNCTION: festt result LOGGING ENABLED |

IF PASS | | THEM RETURN: =] |[330 &]
IF FAIL | [THEN CONTINUE =]

DESCRIPTION: |

OK | Cancell

Figure 14-13. test2 Transaction

Any transaction with logging enabled creates a"local" Record variable with
the same name as the test. This record contains the fields specified for the
logging record. For the transaction test1 (Figure 14-12) the expression
testl.result returnsthe value returned by the function called in test1.

There are two reasons for using the expression test1.result inthis
example. First, by using test1.result intransactions test2 through
test9 we can ensure that each transaction uses the same function result,
even if we later change test1 to cal adifferent function.

More importantly in this example, each time you call the UserFunction a
new resistance valueisreturned. Instead of anew value, we want to continue
testing the original resistance value against successive nominal values and
tolerances. So, the transactions test 2 through test 9 al include the
expression test1.result inthe FuNcTION field. These transactions work
like the first, returning the appropriate array ([330 51, [330 101, [270
21, etc.) if passed.

Thefirst eight tests continue to the next test if failed. However, we need an
indication if all thetestsarefailed. Thus, test9 isconfigured IF FAIL

448 Chapter 14

Using the Sequencer Object
Using the Sequencer Object

THEN ERROR. The Error output terminal causesthe AlphaNumeric
display entitlted Error Condition to execute, displaying thetext out of
Range.

Although this approach is simple, it is not very efficient. You would need to
create quite alarge number of sequence transactionsto test several resistance
values, with three tolerances in each case. Figure 14-14 shows an improved

version of the "bin sort" example.

—| Reald4 | ..| —| Test Bounds | ..|

—| Measured R | «
Return | 234

test! (0) == min{a)*9
test2 (0) == max{ay™ .1

A = Double-Click to Add Transaction =

—| setvariable | 4|

- Marme

% |g|0ba|0hrr

—| ForCount | «

totSizely l 5 =
—()l Errar Condition I
—| Formula | 4] -
= Break |
! ’R[i]

Result |
ﬂ _l To S-tring

—| Test¥alue & Tolerance =]

—| BinSot |«

test! (nom) +2% -2% Return | 220 Ohrm, 10%
test? (nom) +5% -5%

testd (nom) +10% -10% L
= Double-. 0 Add Transaction = -I Break |

Figure 14-14. Improved Bin Sort Example

Thisexampleissaved in the file manual46.vee inthe examples
directory.

Chapter 14 449

Using the Sequencer Object
Using the Sequencer Object

Some key points for this program are:

B This program usestwo Sequencer objects. Thefirst one (labeled Test
Bounds) "re-uses" the testsin the second one (labeled Test value &
Tolerance).

B Thereals4 array in the upper left corner of the program contains five
elements, each representing a standard resistance value. However, the list
of valuesisextensible in this example. Regardless of the number of array
elements, the TotSize (x) function returns that number so the For
Count object will iterate the correct number of times. The expression
R[i] inthe Formula object takes care of the indexing.

B Inthe Ssequencer named Test Bounds, thefirst transaction (test1)
callsthe UserFunction simResist with the expression simrResist (),
as Figure 14-15. shows.

Sequence Transaction

TEST:|M_ [ENABLED =]
SPEC NOMINAL: g [omt =] o [>= =] fminar s

FUNCTION: simResist() LOGGING ENABLED |

IF PASS | ITHEN CONTINUE vl

IF FAIL | | THENERRCOR: =] |0
OK | Cancell

DESCRIPTION: |

Figure 14-15. Improved testl Transaction

A simulated resistance test value is returned and tested to seeif it isat
least 90% of the lowest value (150Q) in the array. (Any valuefieldina
sequence transaction can contain an expression such asmin (a) *.9.)

450 Chapter 14

Using the Sequencer Object
Using the Sequencer Object

The second transaction (test2) teststo seeif the value
(testl.result) islessthan or equal to 110% of the highest value
(330Q) in the array. Figure 14-16 shows this transaction.

Sequence Transaction

TesT | [EE® | [EnaBlED]

SPEC NOMINAL: [0 [oMt = o [e= =] maxae
FUNCTION: fiesti result LOGGING ENABLED |

IF PASS | | THEN RETURN: =] [thistest.result

IF FAIL | | THENERROR: =] |1
OK | Cancell

DESCRIPTION: |

Figure 14-16. Improved test2 Transaction
If either test fails, an error occurs.

B |f an error does occur, the UserObject named Error Condition USESa
Triadic expression to ascertain whether to display out of Range:
LOW Or out of Range: HIGH. The UserObject isconfigured as show
Panel on Exec S0 if either error condition occurs adisplay "pops up"
to show the error. This happens once every few times you run the
program because the UserFunction simrResist returns random values
in the range 100-400. (To continue, press ok in the pop-up box.)

Chapter 14 451

Using the Sequencer Object
Using the Sequencer Object

B Thetransaction test1 inthefirst Sequencer isthe only transaction that
callsthe UserFunction simResist. (test2 includesthe expression
testl.result ingead of simResist.) Thisisnecessary in this case
because we want to run multiple tests on just one resistance value.
Otherwise, anew vaue would be returned every time the UserFunction
was called. However, there is another reason.

Since the UserFunction simResist isonly called once, you can replace
itwithacall to adifferent UserFunction. The example (manual4é6 .vee,
Figure 14-14) contains a second UserFunction, called measResist,
which uses a Panel Driver to call an HP 3478A Digital Voltmeter
configured for resistance measurements. If you have an HP 3478A meter,
connect it via GPIB, change the ForMULA field in test1 to the
expression measResist (), and run the program.

B Regardless of whether simulated or measured resistance values are taken,
theTest Bounds returnvalueisdisplayed andisset asaglobal variable
(globalohms). For example, the three transactionsin the Sequencer
labeled Test Value & Tolerance (Figure 14-14) each call thisglobal
variable using the expression globalohms. Figure 14-17 showsthe first
transaction expanded.

Sequence Transaction

TesT:| BRI | [ENeELED]

SPEC NOMINAL: [nam [%TOLERANCE =] + |2 % - |2 %
FUNCTION: [yliobalohms LOGGING ENABLED |

IF PASS | | THEN RETURN: =] [[nom 2]
IF FAIL | [THEN CONTINUE =]

DESCRIPTION: |

Ok | Cancel'

Figure 14-17. globalOhms Transaction

452 Chapter 14

Using the Sequencer Object
Using the Sequencer Object

If atest passes, the appropriate real array (e.g., [220 21) isoutput. The
To String object convertsthe datato astring (e.g., 220 Ohm, 2%).
The sequencer is executed as many times as necessary until aBin
Sort result isfound.

B Since we are not using the Log output terminal in either sequencer we
have deleted the terminal to speed up execution.

B |If you want to see the flow of this program, try running it afew times
with Show Execution Flow and Show Data Flow turned on.

For some further examples using the sequencer, seethe examples
directory.

Chapter 14 453

Using the Sequencer Object
Using the Sequencer Object

454 Chapter 14

/O Transaction Reference

/O Transaction Reference

This appendix describes VEE |/O transaction actions, encodings, and
formats. The contents are:

B |/O Transactions Summary
B WRITE Transactions

B READ Transactions

B Other Transactions

456 Appendix A

I/0 Transaction Reference
I/O Transactions Summary

|/O Transactions Summary

Table A-1 summarizes /O transaction types for VEE, and Table A-2
summarizes the I/O Transactions Objects for VEE.

Table A-1. Summary of I/O Transaction Types

Action Description
WRITE Writes data to the destination specified in the object.
READ Reads data from the source specified in the object.
EXECUTE Executes low-level commands to control the file,

instrument, or interface associated with the object.
EXECUTE is used to adjust file pointers, to close
pipes and files and to provide low-level control of
instruments and hardware interfaces.

WAIT Waits for the specified number of seconds before
executing the next transaction.

For Direct I/O objects, WAIT can also wait for a
specific serial poll response, or for specific values in
accessible VXI instrument registers.

SEND Sends IEEE 488-defined bus messages (bus
commands and data) to a GPIB interface.

READ (REQUEST) Reads DDE data from another application.

WRITE (POKE) Writes DDE data to another application.

Appendix A 457

I/0 Transaction Reference
I/O Transactions Summary

Table A-2. Summary of I/O Transaction Objects

Objects Supported Transactions
EXECUTE WAIT READ WRITE SEND

To File X X X
From File X X X
To Printer X X
To String X
From String X X
To StdoOut X X
From StdIn X X
To StdErr X X
Execute Program (UNIX)? X X X X
To/From Named Pipe X X X X
To/From Socket X X X X
Direct I/O X
MultiInstrument Direct I/0 | X X X X
Interface Operations X X
To/From Rocky Mountain X X X X
BasicP
To/From DDEC® X X X X

a. Execute Program (PC) is nottransaction based.

b. VEE for HP-UX only.
c. VEE for Windows only.

458

Appendix A

I/0 Transaction Reference
WRITE Transactions

WRITE Transactions

This section describes the WRITE transaction in Table A-3. Topics that apply
to al wrRITE encodings are summarized at the beginning of this section.

Path-Specific Behaviors

Some WRITE transactions behave differently, depending on the 1/0O path

of the destination. For example, WRITE TEXT HEX transactionsformat
hexadecimal numbers differently depending on whether the destination isa
UNIX file or an instrument. To distinguish these behaviors, this section uses
these terms:

B UNIX path isany destination other than an instrument, such asa UNIX
file, astring, the printer, or aUNIX pipe.

B MS-DOS path is any destination other than an instrument, such as an
MS-DOSfile, astring, or the printer.

B Direct /O path isany instrument accessed using Direct I/O.

Appendix A 459

I/0 Transaction Reference
WRITE Transactions

Behaviorsfor all Paths

The behaviors described in the following sections apply to al paths except
as specificaly noted in Table A-3

Table A-3. WRITE Encodings and Formats

Encodings

Formats

TEXT

DEFAULT
STRING

QUOTED STRING
INT16, INT32
OCTAL

HEX

REAL32, REAL64
COMPLEX
PCOMPLEX
COORD

TIME STAMP

BYTE

Not Applicable

CASE

Not Applicable

BINARY

STRING
BYTE
INT16
INT32
REAL32
REALG64
COMPLEX
PCOMPLEX
COORD

BINBLOCK

BYTE
INT16
COMPLEX
INT32
PCOMPLEX
REAL32
REALG64
COORD

CONTAINER

Not Applicable

STATE?

Not Applicable

460

Appendix A

I/0 Transaction Reference
WRITE Transactions

Table A-3. WRITE Encodings and Formats

Encodings Formats

REGISTERP BYTE
WORD16

WORD32
REAL32

MEMORY® BYTE
WORD16

WORD32
REAL32
WORD32*2
REAL64

TOCONTROLS Not Applicable

a. Direct I/O to GPIB only.
b. Direct I/0 to VXI only.
c. Direct I/0O to GPIO only.

Appendix A 461

I/0 Transaction Reference
WRITE Transactions

TEXT Encoding

WRITE TEXT transactions are of thisform:
WRITE TEXT ExpressionList [Format]

ExpressionList isasingle expression or acomma-separated list of
expressions.

Format isan optional setting that specifies one of the formatslisted in
Table A-4.

462 Appendix A

I/0 Transaction Reference
WRITE Transactions

Table A-4. Formats for WRITE TEXT Transactions

Format Description

DEFAULT VEE automatically determines an appropriate text representation
based on the data type of the item being written.

STRING Writes Text data without any conversion. Writes numeric data types as
Text with maximum numeric precision.

QUOTED Writes data in the same format as STRING, except the data is

STRING surrounded by double quotes (ASCII 34 decimal).

INT16 Writes data as a 16-bit two’'s complement integer in decimal form.

INT32 Writes data as a 32-bit two's complement integer in decimal form.

OCTAL Writes data as a 32-bit two’s complement integer in octal form.

HEX Writes data as a 32-bit two’s complement integer in hexadecimal form.

REAL32 Writes data as a 32-bit floating point number in a variety of notations
including fixed decimal and scientific notation.

REALG4 Writes data as a 64-bit floating point number in a variety of notations
including fixed decimal and scientific notation.

COMPLEX Writes a comma-separated pair of 64-bit floating point numbers that
represent a complex number. The first number represents the real
part and the second number represents the imaginary part.

PCOMPLEX Writes a comma-separated pair of 64-bit floating point numbers that
represent a complex number. The first number represents the
magnitude and the second number represents the phase angle in the
phase units specified in the transaction.

COORD Writes a comma-separated series of 64-bit floating point numbers that
represent a rectangular coordinate.

TIME Converts a real number (for example, the output of the now ()

STAMP function) to a meaningful form and writes it in a variety of combinations

of year, month, day and time.

Appendix A 463

DEFAULT Format

I/0 Transaction Reference
WRITE Transactions

WRITE TEXT (default) transactions are of thisform:
WRITE TEXT ExpressionList

ExpressionList isasingle expression or acomma-separated list of
expressions.

The transaction converts each item in ExpressionList to ameaningful
string and writesit. Consider the simple case of writing the scalar variable x
as shown in Figure A-1:

WRITE TEXT X

Figure A-1. AWRITE TEXT Transaction
If x in Figure A-1 contains text, such as:
bird cat dog
no conversion is performed and the transaction writes exactly 12 characters.
If x in Figure A-1 contains ascaar Integer, such as:
8923 thevalue of X (decimal notation)

the numeric value is converted to text and VEE writes exactly four
characters.

If x in Figure A-1 contains a scaar real vaue, such as.
1.2345678901234567 thevalue of X (17-digit scalar real value)

each significant digit up to 16 significant digitsis written. The least
significant digit is approximate because of the conversion between VEE's
internal binary form and decimal notation. If you use this scalar real value
using the transaction:

WRITE TEXT a EOL
then VEE writes this:
1.234567890123457 16-digit value

If the absolute value of the number is sufficiently large or small, exponential
notation is used. The Reals that form the sub-elements of Coord, Complex,
and PComplex behave the same way.

464 Appendix A

STRING Format

I/0 Transaction Reference
WRITE Transactions

If EoL oN isspecified for any WRITE TEXT DEFAULT transaction, the
character specified inthe EOL. sequence field for that object iswritten
following the last character in ExpressionList.

WRITE TEXT STRING transactions are of thisform:
WRITE TEXT ExpressionList STR

ExpressionList isasingle expression or acomma-separated list of
expressions.

WRITE TEXT STRING transactions behave basically the same aswRITE
TEXT (default) transactions (one exception will be discussed). The
significant differenceisthat sTRING allows you to specify additional details
about output formatting including field width, justification and number of
characters.

Field Width and Justification. If atransaction specifies DEFAULT FIELD
WIDTH, only those characters resulting from the conversion of itemswithin
ExpressionList to Text are written.

If atransaction specifies FIELD WIDTH: F, the converted Text iswritten
right- or left-justified within a space F characters wide.

Thetransactionsin Figure A-2 specify that all characters are to be written
within afield of twenty characters with left justification.

WRITE TEXT X STR FW:20 LJ EOL
WRITE TEXT Y STR FW:20 LJ EOL

Figure A-2. Two WRITE TEXT STRING Transactions

If x and Y in Figure A-2 have these values:

bird cat dog the Text value of X
12345678901234567 the Real valueof Y
then V EE writes;

bird cat dog
12345678901234567

A A

Appendix A 465

I/0 Transaction Reference
WRITE Transactions

The caret characters (*) are not actually written by VEE, but are shown to
help you visualize the field width. The characters to the right of dog and to
the right of the second 7 are spaces (ASCII 32 decimal).

If justification is changed to RIGHT JUSTIFY, the transactions appear as
shown in Figure A-3.

WRITE TEXT X STR FW:20 RJ EOL
WRITE TEXT Y STR FW:20 RJ EOL

Figure A-3. Two WRITE TEXT STRING Transactions

If x and Y in Figure A-3 have these values:

bird cat dog the Text value of X
12345678901234567 the Real valueof Y
V EE writes;

bird cat dog
12345678901234567

A

The caret characters (*) are not actually written by VEE, but are shown to
help you visualize the field width. The charactersto the left of bird and to
the left of thefirst 1 are spaces (ASCII 32 decimal).

If the length of a string exceeds the specified field width, the entire string is
written. The field width specification never truncates as only MAX NUM
CHARS can truncate characters.

Thetransaction in Figure A-4 specifiesthat all charactersareto be writtenin
afield width of four characters with left justification.

WRITE TEXT X STR FW:4 LJ

Figure A-4. AWRITE TEXT STRING Transaction
If x in Figure A-4 has this value:
bird cat dog theText valueof X, 12 characters
VEE writes:

bird cat dog all 12 characters

466 Appendix A

I/0 Transaction Reference
WRITE Transactions

Even though the specified field width isfour characters, the transaction
writes all twelve characters of the string.

Number of Characters. If you specify ALL CHARS, al the characters
generated by the conversion of each item in ExpressionList are
written. If you specify MAX NUM CHARS: M, only the first M characters of
eachitemin ExpressionList arewritten.

The transactionsin Figure A-5 specify that a maximum of seven characters
arewrittenin each field, thefield width istwenty characters and field entries
are left-justified.

WRITE TEXT X STR:7 FW:20 LJ EOL
WRITE TEXT Y STR:7 FW:20 LJ EOL

Figure A-5. Two WRITE TEXT STRING Transactions

If x and v in Figure A-5 have these values:

bird cat dog the Text value of X

12345678901234567 theReal value of Y
V EE writes:

bird ca

1234567

A A

The numeric value of v isfirst converted to Text and characters are
truncated. Numeric values are not rounded by MAX NUM CHARS.

The caret characters (*) are not actualy written by VEE, but are shown to
help you visualize the field width. The charactersto theright of bird andto
theright of thefirst 1 are spaces (ASCII 32 decimal).

Appendix A 467

Note

QUOTED STRING
Format

I/0 Transaction Reference
WRITE Transactions

Writing Arrays With Direct I/O. WRITE TEXT STR transactions that
writearraysto direct I/O pathsignorethe Array Separator setting for the
Direct I/0 object. Thesetransactions aways use linefeed (ASCII
decimal 10) to separate each element of an array (which isastring) asit is
written. This behavior is consistent with the needs of most instruments.

This special behavior for arrays does not apply to any other types of
transactions.

WRITE TEXT QUOTED STRING transactions are of thisform:
WRITE TEXT ExpressionList QSTR

ExpressionList isasingle expression or acomma-separated list of
expressions.

In general, the behaviors previoudy discussed for the sTrRING format apply
to QuOTED STRING format. There are two differences between sTRING and
QUOTED STRING:

B For QUOTED STRING, adouble quote (ASCII 34 decimal) is added to the
beginning and the end of the string. The double quotes are applied before
any padding spaces are added to justify the string within the specified
field width.

B Control characters (ASCII 0-31 decimal), escape characters (Table A-5)
and the characters ' (ASCII 39 decimal) and " (ASCII 34 decimal)
embedded inside a double-quoted string receive specia treatment.

Field Width and Justification. If you specify DEFAULT FIELD WIDTH,
only those characters resulting from the conversion of items within
ExpressionList to Text and the surrounding double quotes are written.

If you specify FIELD WIDTH: F, the converted Text and the surrounding
guotes are written right or left justified within a space F characters wide.

468 Appendix A

I/0 Transaction Reference
WRITE Transactions

Thetransactionsin Figure A-6 specify that all characters are to be written as
guoted strings in a field 20 characters wide with | eft justification.

WRITE TEXT X QSTR FW:20 LJ EOL
WRITE TEXT Y QSTR FW:20 LJ EOL

Figure A-6. Two WRITE TEXT QUOTED STRING Transactions

If x and v in Figure A-6 have these values:

bird cat dog the Text value of X
12345678901234567 theReal value of Y
V EE writes:

"bird cat dog"
"12345678901234567"

A A

The caret characters (*) are not actually written by VEE, but are shown to
help you visualize the field width. The charactersto the right of dog" and to
theright of 7" are spaces (ASCII 32 decimal).

If justification is changed to RIGHT JUSTIFY, the transactions appear as
shown in Figure A-7.

WRITE TEXT X QSTR FW:20 RJ EOL
WRITE TEXT Y QSTR FW:20 RJ EOL

Figure A-7. Two WRITE TEXT QUOTED STRING Transactions

If x and v in Figure A-7 have these values:

bird cat dog the Text value of X
12345678901234567 the Real value of Y
V EE writes:

"bird cat dog"
"12345678901234567"

A A

The caret characters (*) are not actually written by VEE, but are shown to
help you visualize the field width. The charactersto the left of "bird andto
the left of "1 are spaces (ASCII 32 decimal).

Appendix A 469

I/0 Transaction Reference
WRITE Transactions

If the length of a string exceeds the specified field width, the entire string is
output. The field width specification never truncates strings that are written
asonly MAX NUM CHARS can truncate characters.

The transaction in Figure A-8 specifiesthat all characters are to be written
within afield of four characters with left justification.

WRITE TEXT X QSTR FW:4 LJ

Figure A-8. AWRITE TEXT QUOTED STRING Transaction
If x in Figure A-8 has this value:
bird cat dog theText valueof X, 12 characters
VEE writes:

"bird cat dog" all 12 characters

Number of Characters. If you specify ALL. CHARS, all the characters
generated by the conversion of each item in ExpressionList aswell as
the surrounding double quotes are written. If you specify MAX NUM CHARS:
M, only the first M characters of each item in ExpressionList plusthe
surrounding double quotes are written. In other words, atotal of M+2
characters are written for each item in ExpressionList.

Thetransaction in Figure A-9 specifiesMaAx NUM CHARS: 7 (field width 20,
left-justified).

WRITE TEXT X QSTR:7 FW:20 LJ EOL
WRITE TEXT Y QSTR:7 FW:20 LJ EOL

Figure A-9. Two WRITE TEXT QUOTED STRING Transactions

If x and Y in Figure A-9 have these values:

bird cat dog the Text value of X

12345678901234567 the Real value of Y
V EE writes:

"bird ca"

"1234567"

A A

470 Appendix A

I/0 Transaction Reference
WRITE Transactions

The caret characters (*) are not actualy written by VEE, but are shown to
help you visualize the field width. The characters to the right of ca" and to
theright of 7" are spaces (ASCII 32 decimal).

Embedded Control and Escape Characters. In this discussion, the terms
control character and escape character have specific meaning. A control
character is a single byte of data corresponding to one of the ASCI|
characters 0-31 decimal. For example, linefeed is ASCII 10 decimal and the
symbol <LF> denotes linefeed character inthisdiscussion. Thestring \n isa
human-readable escape character representing linefeed that is recognized by
VEE. VEE uses escape characters to represent control characters within
guoted strings.

Appendix A 471

I/0 Transaction Reference
WRITE Transactions

See Table A-5 for Escape Characters.

Table A-5. Escape Characters

Escape Character ASCII Code Meaning
(decimal)

\n 10 Newline

\t 9 Horizontal Tab

\v 11 Vertical Tab

\b 8 Backspace

\r 13 Carriage Return

\f 12 Form Feed

\" 34 Double Quote

\’ 39 Single Quote

\\ 92 Backslash

\ddd The ASCII character
corresponding to the three-
digit octal value ddd.

Consider the effects of various embedded escape characters on the
transaction in Figure A-10.

WRITE TEXT X QSTR EOL

Figure A-10. A WRITE TEXT QUOTED STRING Transaction

472 Appendix A

INTEGER Formats

I/0 Transaction Reference
WRITE Transactions

If x in Figure A-10 hasthis value:
bird\ncat dog
VEE writesthisto UNIX paths:
"bird\ncat dog"
For the same transaction and data, VEE writes thisto direct 1/O paths:
"bird<LF>cat dog"
where <LF> means the single character, linefeed (ASCII 10 decimal).
If x in Figure A-10 hasthis value:
bird \"cat\" dog
VEE writesthisto UNIX paths and Direct I/O paths for seria interfaces:
"bird \"cat\" dog"

For the same transaction and data, VEE writes thisto direct 1/O paths for
GPIB interfaces:

Ilbird n Ilcatll n dogll

This unique behavior for GPIB interfacesis provided to support the
requirements of |EEE 488.2.

WRITE TEXT INTEGER transactionsare of thisform:

WRITE TEXT ExpressionList INT16
WRITE TEXT ExpressionList INT32

ExpressionList isasingle expression or acomma-separated list of
expressions.

The type of integer generated by thistransaction is a 16-bit or 32-bit two's
complement integer. The range of 16-bit integersis-32766 to +32767. The
range of 32-bit integersis -2 147 483 648 to +2 147 483 647.The
only characters written to represent these numbers are +—0123456789.

VEE attempts to convert each item in ExpressionList tothe Int32 or
Int1e datatype before converting it to Text for final formatting. VEE
followsthe usua conversionrules. Seethebata Type Conversion topics
under Tell Me About...in VEE Online Help for more details.

Appendix A 473

I/0 Transaction Reference
WRITE Transactions

If arReal32 iswritten using 1nT16 Or INT32 fOrmat:
B Read values outside the valid range of Int16 generate an error.

B Rea valueswithin the valid range of Int32 or Int16 are converted by
truncating the fractional portion of the Real.

If areals4 iswritten using 1nT16 Or INT32 fOrmat:
B Read valuesoutside thevalid range of Int32 or Int16 generate an error.

B Rea valueswithin the valid range of 1nt32 or Int1e are converted by
truncating the fractional portion of the Real.

Number of Digits. If you specify DEFAULT NUM DIGITS, thetransaction
writes only the digits required to express the value of theinteger and leading
zeros are not used.

If you specify MIN NUM DIGITS: M, the transaction pads the output with
leading zeros as required to give atotal of exactly m digits.

Consider thetwo Int16 or Int32 transactionsin Figure A-11, which differ
only in their specification for the number of output digits.

WRITE TEXT X INT16 EOL default number of digits
WRITE TEXT X INT16:6 EOL six digits
or
WRITE TEXT X INT32 EOL default number of digits
WRITE TEXT X INT32:6 EOL six digits

Figure A-11. Two WRITE TEXT INTEGER Transactions
If x in Figure A-11 hasthis value:
4567
VEE writes:

4567
004567

474 Appendix A

I/0 Transaction Reference
WRITE Transactions

MIN NUM DIGITS never causestruncation of the output string. The
transaction in Figure A-12 specifies the minimum number of digitsto be 1.

WRITE TEXT X INT1lé6:1 EOL
or
WRITE TEXT X INT32:1 EOL

Figure A-12. A WRITE TEXT INTEGER Transaction
If x in Figure A-12 has a value of:
12345678
VEE writes:
12345678 all eight digits

Sign Prefixes. You may optionally specify one of the sign prefixes listed in
Table A-6 aspart of awRITE TEXT INT transaction.

Table A-6. Sign Prefixes

Prefix Description

/- Positive numbers are written with no prefix, neither a + nor a
space. All negative numbers are written with a - prefix.

+/- All positive numbers are written with a + prefix. All negative
numbers are written with a - prefix.

o/ All positive numbers are written with a space (ASCII 32
decimal) prefix. All negative numbers are written with a - prefix.

Any prefixed signsdo not count towardsMIN NUM DIGITS. Thetransaction
shown in Figure A-13 specifies explicit leading signs for positive and
negative numbers.

WRITE TEXT X INT16:6 SIGN:"+/-" EOL
WRITE TEXT Y INT32:6 SIGN:"+/-" EOL

Figure A-13. Two WRITE TEXT INTEGER Transactions

Appendix A 475

OCTAL Format

I/0 Transaction Reference
WRITE Transactions

If x and v in Figure A-13 have values of:

123 thelnteger value of X
-123 thelnteger value of Y

V EE writes:

+000123 sixdigitsplussign
-000123

WRITE TEXT OCTAL transactions are of thisform:
WRITE TEXT ExpressionList OCT

ExpressionList isasingle expression or acomma-separated list of
expressions.

The type of integer written by this transaction is a 32-bit two’s complement
integer. The range of theseintegersis -2 147 483 648t0+2 147 483
647. The only characters written to represent these octal numbers are
01234567. An optiona prefix may be specified which may include other
characters.

VEE attempts to convert any data written using ocTaL format to the Int32
datatype before converting it to Text for final formatting. The usual VEE
conversion rules are followed.

If aReal iswritten using ocTAL format:
B Real values outside the valid range of Tnt32 generate an error.

B Rea values within the valid range of 1nt32 are converted by truncating
the fractional portion of the Real.

Number of Digits. The behavior of DEFAULT NUM DIGITS and MIN NUM
DIGITS isthe same as described previously in “Number of Digits’ on
page 474 for WRITE TEXT INTEGER transactions.

476 Appendix A

I/0 Transaction Reference
WRITE Transactions

Octal Prefixes. You may specify one of the prefixes listed in Table A-7 as
part of aWRITE TEXT OCTAL transaction.

Table A-7. Octal Prefixes

Prefix Description
NO PREFIX VEE writes each octal number without any prefix. Only
the digits 01234567 appear in the output.
DEFAULT For direct I/O paths, VEE prefixes each octal number
PREFIX with #Q. This supports the octal Non-Decimal Numeric

data format defined by IEEE 488.2.

For UNIX paths, VEE prefixes each octal number with
a 0 (zero). If leading zeros are added to achieve the
specified MIN NUM DIGITS, DEFAULT PREFIX will
not add additional leading zeros.

PREFIX:string | VEE prefixes each octal number with the characters
specified in string.

The transaction in Figure A-14 specifies the default prefix and six digits:

WRITE TEXT X OCT:6 PREFIX EOL

Figure A-14. A WRITE TEXT OCTAL Transaction
If x in Figure A-14has this value:
15 thevalue 15 decimal
VEE writesthis to direct I/O paths:
#0000017 exactly six digits plus prefix
Using the same transaction and data, VEE writes thisto UNIX paths:

000017 exactly six digits

Appendix A 477

HEX Format

I/0 Transaction Reference
WRITE Transactions

The transaction in Figure A-15 specifies a custom prefix and ten digits:

WRITE TEXT X OCT:10 PREFIX:"oct>" EOL

Figure A-15. A WRITE TEXT OCTAL Transaction
If x in Figure A-15 hasthis value:
15 thelnteger value 15 decimal
VEE writes thisto UNIX paths and direct |/O paths.
0oct>000017

The prefix written by DEFAULT PREFIX depends on the destination, but the
prefix written by PREFIX: string isindependent of the destination.

WRITE TEXT HEX transactions are of thisform:
WRITE TEXT ExpressionList HEX

The type of integer written by this transaction is a 32-bit two’s complement
integer. Therange of theseintegersis -2 147 483 648 to +2 147 483
647. Theonly characterswritten to represent these hexadecimal numbersare
0123456789abcdef. Anoptiona prefix may be specified that may include
other characters.

The behavior of WRITE TEXT HEX isnearly identical to that of WRITE
TEXT OCTAL. Theonly differenceisthe set of prefixes available and the
behavior of DEFAULT PREFIX.

478 Appendix A

I/0 Transaction Reference
WRITE Transactions

Hexadecimal Prefixes. You may specify one of the prefixeslisted in Table
A-8 aspart of awRITE TEXT HEX transaction.

Table A-8. Hexadecimal Prefixes

Prefix Description

NO PREFIX VEE writes each hexadecimal number without any
prefix. Only the digits 0123456789abcdef appear in
the output.

DEFAULT For direct I/O paths, VEE prefixes each hexadecimal

PREFIX number with #H. This supports the hexadecimal
Non-Decimal Numeric data format defined by IEEE
488.2.

For UNIX paths, VEE prefixes each hexadecimal
number with 0x.

PREFIX:string | VEE prefixes each hexadecimal number with the
characters specified in string.

The transaction in Figure A-16 specifies the default prefix and six digits:

WRITE TEXT X HEX:6 PREFIX EOL

Figure A-16. A WRITE TEXT HEX Transaction
If x in Figure A-16 hasthis value:
15 thelnteger value 15 decimal
VEE writesthis to direct I/O paths:
#H00000f exactly six digits plus prefix
Using the same transaction and data, VEE thisto UNIX paths.

0x00000f exactly six digits plus prefix

Appendix A 479

REAL32 and
REAL64 Format

I/0 Transaction Reference
WRITE Transactions

The transaction in Figure A-17 specifies a custom prefix and three digits:

WRITE TEXT X HEX:3 PREFIX:"hex>" EOL

Figure A-17. AWRITE TEXT HEX Transaction
If X in Figure A-17 hasthis value:
15 thelnteger value 15 decimal
VEE writes thisto UNIX paths and direct |/O paths.
hex>00f exactly three digits plus prefix

The prefix written by DEFAULT PREFIX depends on the destination, but the
prefix written by PREFIX: string isindependent of the destination.

WRITE TEXT REAL32 transactions are of the form shown below:

WRITE TEXT ExpressionList REAL32

Thetype of Real number generated by this transaction is a 32-bit IEEE 754
floating-point number. The range of these numbersis:

-3.40282347E38
to
3.40282347E38
WRITE TEXT REAL64 transactions are of the form shown below:
WRITE TEXT ExpressionList REAL64

Thetype of Real number generated by this transaction is a 64-bit IEEE 754
floating-point number. The range of these numbersis:

-1.797 693 134 862 315E+308
to
1.797 693 134 862 315E+308

The only characters written to represent these numbers are
+-.0123456789E.

480 Appendix A

I/0 Transaction Reference
WRITE Transactions

Notations and Digits. You may optionally specify one of the notationsin
Table A-9 aspart of awRITE TEXT REAL transaction.

Table A-9. REAL Notations

Notation Description

STANDARD VEE automatically determines whether each Real value
should be written in fixed-point notation (decimal points
as required, no exponents) or in exponential notation.
Non-significant zeros are never written.

FIXED VEE writes each Real value as a fixed-point number.
Numbers with fractional digits are automatically rounded
to fit the number of fractional digits specified by NUM
FRACT DIGITS. Trailing zero digits are added as
required to give the specified number of fractional digits.

SCIENTIFIC | VEE writes each Real value using exponential notation.
Each exponent includes an explicit sign (+ or -) and the
upper-case E is always used. Numbers with fractional
digits are automatically rounded to fit the number of
fractional digits specified by NUM FRACT DIGITS.
Trailing zero digits are added as required to give the
specified number of fractional digits.

The transactions in Figure A-18 specify STANDARD notation and four
significant digits.

WRITE TEXT X REAL32 STD:4 EOL
WRITE TEXT Y REAL64 STD:4 EOL
WRITE TEXT Z REAL32 STD:4 EOL

Figure A-18. Three WRITE TEXT REAL Transactions

Appendix A 481

I/0 Transaction Reference
WRITE Transactions

If X, vy and z in Figure A-18 have these values:

1.23456E2 the Real 32 value of X
1.23456E09 theReal64 value of Y
1.23 the Real 32 value of Z

VEE writes:
123.5 mantissa rounded as required
1.235E+09 large numbersin exponential notation
1.23 never any trailing zeros

The transactions in Figure A-19 specify FIXED notation and four fractional
digits.

WRITE TEXT X REAL64 FIX:4 EOL
WRITE TEXT Y REAL32 FIX:4 EOL
WRITE TEXT Z REAL64 FIX:4 EOL

Figure A-19. Three WRITE TEXT REAL Transactions

If X, Yy and z in Figure A-19 have these values:

1.2345678E2 the Real64 value of X
1.2345678E-09 the Real32 value of Y
1.23 the Real64 value of Z

V EE writes:
123.4568 mantissa rounded as required
0.0000 small numbers round to zero
1.2300 trailing zeros added as required

The transactionsin Figure A-20 specify SCIENTIFIC notation and four
fractional digits.

WRITE TEXT X REAL32 SCI:4 EOL
WRITE TEXT Y REAL64 SCI:4 EOL
WRITE TEXT Z REAL32 SCI:4 EOL

Figure A-20. Three WRITE TEXT REAL Transactions

482 Appendix A

COMPLEX,
PCOMPLEX, and
COORD Formats

I/0 Transaction Reference
WRITE Transactions

If X, vy and z in Figure A-20 have these values:

1.2345678E2 the Real 32 value of X
-1.2345678E-09 the Real64 value of Y
0 the Real 32 value of Z

VEE writes:
1.2346E+02 exponent is E plus two signed digits
-1.2346E-09 last digit rounded as required
0.0000E+00 trailing zeros padded as required

COMPLEX, PCOMPLEX, and COORD correspond to the VEE multi-field data
types with the same names. The behavior of all three formatsisvery similar.
The behaviors described in this section apply to all three formats except as
noted.

Just asthe V EE data types Complex, PComplex, and Coord are composed of
multiple Real numbers, the coMpPLEX, PCOMPLEX, and COORD formats are
essentially compound forms of the REAL 64 format. Each constituent Real
value of the multi-field data types is written with the same output rules that
apply to anindividual REAL64 formatted value.

Thefinal output of transactions involving multi-field formatsis affected by
theMulti-Field Format Setting for the object in question. Multi -
Field Format isaccessedviaI/O = Instrument Manager fOrDirect
1/0 objectsand via config in the object menu for all other objects. The
two possible settingsfor Multi-Field Format are:

B Data Only. Thiswrites multi-field dataformatsasalist of comma-
separated numbers without parentheses.

M (...) Syntax. Thiswrites multi-field dataformats asalist of comma-
separated numbers grouped by parentheses.

Subsequent examples will illustrate these behaviors.

Appendix A 483

I/0 Transaction Reference
WRITE Transactions

COMPLEX Format. wWRITE TEXT COMPLEX transactions are of thisform:
WRITE TEXT ExpressionList CPX

Thetransaction in Figure A-21 specifies afixed-decimal notation, explicit
leading signs, afield width of 10 characters and right justification.

WRITE TEXT X CPX FIX:3 SIGN:"+/-" FW:10 RJ EOL

Figure A-21. AWRITE TEXT COMPLEX Transaction

If theMulti-Field Format iSSetto (...) Syntaxandxin
Figure A-21 has this value:

(-1.23456 , 9.8) the Complex value of X
VEE writes:

(A —1.23§ - +9.809)

If theMulti-Field Format iSSettoData Only andx inFigure A-21 has
the same value, VEE writes:

-1.235, +9.800

A A A A

The caret characters (*) are not actually written by VEE, but are shown to
help you visualize the field width. The characters to the left of + are spaces
(ASCII 32 decimal).

With (...) syntax, aspace-comma-space sequence separates the ten-
character wide fields that contain the real and imaginary parts of the
Complex number. With either Multi-Field Format thereisaseparate
ten-character field for both the real and the imaginary part. Neither
parentheses nor the separating comma and spaces are included in the field.

484 Appendix A

I/0 Transaction Reference
WRITE Transactions

PCOMPLEX Format. WRITE TEXT PCOMPLEX transactions are of this
form:

WRITE TEXT ExpressionList PCX

pcoMPLEX format allows you to specify the phase units for the polar
complex number it writes. Phase units are independent of the units set by
Trig Mode in Properties. See Table A-10.

Table A-10. PCOMPLEX Phase Units

Unit Description
DEG Degrees
RAD Radians
GRAD Gradians

Thefirst transaction in Figure A-22 specifies phase measurement in degrees
and the second transaction specifies phase measurement in radians.

WRITE TEXT X PCX:DEG STD EOL
WRITE TEXT X PCX:RAD STD EOL

Figure A-22. Two WRITE TEXT PCOMPLEX Transactions

If theMulti-Field Format iSSettoData Only andx inFigure A-22 has
thisvalue:

(-1.23456, @90) the PComplex value of X, phase in degrees
VEE writes:

1.23456,-90
1.23456,-1.570796326794897

The transaction in Figure A-23 specifies phase measurement in radians,
fixed-decimal notation, three fractional digits, explicit leading signs, afield
width of ten characters and right justification.

WRITE TEXT X PCX:RAD FIX:3 SIGN:"+/-" FW:10 RJ EOL

Figure A-23. AWRITE TEXT PCOMPLEX Transaction

Appendix A 485

TIME STAMP
Format

I/0 Transaction Reference
WRITE Transactions

If theMulti-Field Format iSSetto (...) Syntaxandxin
Figure A-23 has this value:

(-1.23456 , @9.8) the PComplex value of X, anglein radians
VEE writes:

(A +1.235 , @ +O'37f)

VEE normalizes all PComplex numbersto yield a positive magnitude and a
phase between +r and -m.

If theMulti-Field Format iSSettoData Only and x in Figure 12-23
has the same value, VEE writes:

+1.235, +0.375

A A A A

The caret characters (*) are not actually written by VEE, but are shown to
help you visualize the field width. The characters to the left of - and to the
left of + are spaces (ASCII 32 decimal).

COORD Format. WRITE TEXT COORD transactions are of thisform:
WRITE TEXT ExpressionList COORD

CcoOoRD format has al the same behaviors of compLEX format. The only
difference isthat coorD may contain an arbitrary number of fields while
coMPLEX has exactly two fields.

WRITE TEXT TIME STAMP transactionsare of thisform:
WRITE TEXT ExpressionList [DATE:DateSpec] [TIME:TimeSpec]

ExpressionList isasingle expression or acomma-separated list of
expressions.

DateSpec isone of the following pre-defined date and time combinations:

Date
Time
Date&Time
Time&Date
Delta Time

486 Appendix A

I/0 Transaction Reference
WRITE Transactions

If you specify atransaction that includes bate, you may also specify a
DateSpec oOf Weekday DD/Month/YYYY Of
DD/Month/YYYY.

If you specify atransaction that includes Time, you may also specify a
TimeSpec. TimeSpec isacombination of the following pre-defined time
formats:

B HH:MM (hours and minutes)

B HH:MM:SS (hours, minutes and seconds)
B 12 HOUR

M 24 HOUR

Eachitemin ExpressionList isconverted to aReal and interpreted asa
date and time. This Real number represents the number of seconds that have
elapsed since midnight, January 1, AD 1 UTC. The most common source for
this Real number isthe output of aTime Stamp Object. You use the TIME
sTAMP format to convert this Real number to a meaningful string that
contains a human-readable date and/or time.

TIME STAMP supportsavariety of notationsfor writing dates and times.
If a Real variable contains this value:

62806574669.31164

TIME STAMP canwriteit using any of the Time and Date notationsin
Table A-11.

Appendix A 487

I/0 Transaction Reference
WRITE Transactions

Table A-11. Time and Date Notations

Notation

Result

Date with Weekday
DD/Month/YYYY

Thu 04/Apr/1999

Time with HH:MM: SS and 24 HOUR

15:44:29

Date&Time with Weekday
DD/Month/YYYY, HH:MM: SS
and 24 HOUR

Thu 04/Apr/1999 15:44:29

Time&Date with HH:MM: SS, 24 HOUR

and Weekday DD/Month/YYYY

15:44:29 Thu 04/Apr/1999

Delta Time with HH:MM:SS

17446270:44:29

Date with Wweekday

Thu 04/Apr/1999

DD/Month/YYYY

Date with DD/Month/YYYY 04/Apr/1999
Time with HH:MM: SS and 24 HOUR 15:44:29
TIME with HH:MM and 24 HOUR 15:44

TIME with HH:MM: SS and 24 Hour 15:44:29

TIME with HH:MM:SS and 12 Hour

3:44:29 PM

BYTE Encoding

BYTE transactions are of this form:

WRITE BYTE ExpressionList

ExpressionList isasingle expression or acomma-separated list of

expressions.

VEE 5 or earlier Execution Mode converts each itemin
ExpressionList toan Iint1e (16-bit two's complement integer) and
writes the least-significant 8-bits. VEE 6 Execution Mode converts each
itemin ExpressionList to auInts (8-bit two's complement integer)

488

Appendix A

I/0 Transaction Reference
WRITE Transactions

and writesit. Thisis atransaction for writing single charactersto a
instrument. Each expression in ExpressionList must be ascaar.

In VEE 6 Execution Mode, a value greater than 256 causes an error. For
example, in VEE 5 and lower Execution Modes, the transactionsin Figure
A-24 produce the following character data output:

ABCAA

WRITE BYTE 65,66,67
WRITE BYTE 65+1024,65+2048

Figure A-24. Two WRITE BYTE Transactions

In VEE 6 Execution Mode, the second transaction in Figure A-24 will cause
an error.

CASE Encoding

WRITE CASE transactionsare of thisform:
WRITE CASE ExpressionListl OF ExpressionList2

ExpressionList isasingle expression or acomma-separated list of
expressions.

VEE convertseachitemin ExpressionList1toaninteger and usesit as
an index into ExpressionList2. Theindexed item(s) in
ExpressionList2 arewrittenin astring format that is the same as
WRITE TEXT (default).

Indexing of itemsin ExpressionList?2 iszero-based.

Thetransactionsin Figure A-25 illustrate the behavior of case format.

WRITE CASE 2,1 OF "Str0","Strl","Str2"
WRITE CASE X OF 1,1+A,3+A

Figure A-25. Two WRITE CASE Transactions

Appendix A 489

I/0 Transaction Reference
WRITE Transactions

If the variables in Figure A-25 have these values:

2 the Real 32 value of X
0.1 the Real64 value of A

V EE writes:

Str2Sstrl
3.1

BINARY Encoding

WRITE BINARY transactions are of thisform:
WRITE BINARY ExpressionList DataType

ExpressionList isasingle expression or acomma-separated list of
expressions.

DataTypesisone of the following pre-defined VEE data types.

BYTE - 8-bit unsigned byte

INT16 - 16-hit two's complement integer

INT32 - 32-hit two's complement integer
REAL32 - 32-bit IEEE 754 floating-point number
REAL64 - 64-bit IEEE 754 floating-point number
STRING - null terminated string

COMPLEX - equivalent to two REAL64 s
PCOMPLEX -equivalent to two REAL64s

COORD - equivalent to two or more REAL64s

490 Appendix A

Note

I/0 Transaction Reference
WRITE Transactions

VEE 5 and lower Execution Modes store and manipulate all integer values
asthe 1nT32 datatype and all real numbers asthe real datatype, also
known asrREAL64. Thus, the INT16 and REAL32 datatypesare provided for
I/0 only. VEE 5 and lower Execution Modes perform the following data-
type conversions for instrument I/O on an output transaction.

INT32 valuesare individually converted to INT16 values, which are output
to the instrument. However, sincethe I1NT16 datatype has arange of -32768
to 32767, values outside this range will be truncated to 16 hits.

REAL64 values are individually converted to REAL32 values, which are
output to the instrument. However, since the REAL3 2 datatype has asmaller
range than REAL64 datatype, values outside this range cannot be converted
to REAL32 and will result in an error.

In VEE 6 Execution Mode, the datais converted to the appropriate type, and
an error is generated if the dataiis out of range.

BINARY encoded transactions convert each of the values specified in
ExpressionList tothe VEE datatype specified by DataType. Each
converted item isthen written in the specified binary format. However, since
the binary data written is a copy of the representation in computer memory,
it is not easily shared by different computer architectures or hardware.

BINARY encoded data has the advantage of being very compact. READ
BINARY transactions can read any corresponding WRITE BINARY data.

BINARY encoding writes only the numeric portion of each datatype. For
example, the parentheses and comma that can be included when writing
Complex and Coord data with TEXT encoding are never written with
BINARY encoding.

Similarly, when writing arrays, BINARY encoding does not writeany Array
Separators. WRITE BINARY transactions do allow you to specify EOL
ON. Thereisrarely aneed to write EOL with BINARY transactions because
numeric data types are of fixed length and strings are null-terminated.

Appendix A 491

Non-GPIB
BINBLOCK

I/0 Transaction Reference
WRITE Transactions

BINBLOCK Encoding

WRITE BINBLOCK transactions are of thisform:
WRITE BINBLOCK ExpressionList DataType

ExpressionList isasingle expression or acomma-separated list of
expressions.

DataType isone of these pre-defined VEE data types:

BYTE - 8-bit unsigned byte

INT16 - 16-hit two's complement integer

INT32 - 32-hit two's complement integer
REAL32 - 32-bit IEEE 754 floating-point number
REAL64 - 64-bit IEEE 754 floating-point number
COMPLEX - equivalent to two REAL64S
PCOMPLEX -equivalent to two REAL64S

B COORD - equivalent to two or more REAL64s

BINBLOCK Writeseachitemin ExpressionList asaseparate datablock.
The block header used depends on the type of object performing the WRITE
and the object’s configuration.

If theobject isnot Direct 1/0toGPIB, awRITE BINBLOCK always
writesan | EEE 488.2 Definite Length Arbitrary Block Response Data block.
This data format is primarily used for communicating with GPIB
instrumentsusing birect I/0, athough itissupported by other objects.

Each Definite Length Arbitrary Block is of the form:
#<Num_digits><Num bytes><Datax>

where:
isliteraly the # character as shown.

<Num_digits>isan ASCII character that isasingle digit (decimal
notation) indicating the number of digitsin <Num_bytes>.

<Num_bytes> isalist of ASCII characters that are digits (decimal
notation) indicating the number of bytes that follow in <batas.

492 Appendix A

GPIB BINBLOCK

I/0 Transaction Reference
WRITE Transactions

<Data> isasequence of arbitrary 8-bit data bytes.

If the objectispirect 1/0to GPIB, the behavior of WRITE BINBLOCK
transactions depends upon the bDirect I/0 Configuration Settingsfor
Conformance and Binblock; these settings are accessed viathe 1/0 =
Instrument Manager menu selection.

If Conformance iSSettO IEEE 488.2, WRITE BINBLOCK always writes
an | EEE 488.2 Definite Length Arbitrary Block Response Data block.

If conformance iSSet to IEEE 488, the type of header used depends on
Binblock. Binblock may specify IEEE 728 #a, #T, or #1 block headers.
If Binblock iSNone, WRITE BINBLOCK Writesan |EEE 488.2 Definite
Length Arbitrary Block Response Data block.

IEEE 728 block headers are of the following forms:

#A<Byte_ Count><Data>
#T<Byte_ Count><Data>
#I<Data><END>

where:
isthe character as shown.
A,T, T arethe characters as shown.
<Byte Count> consists of two bytes which together form a 16-bit
unsigned integer that specifies the number of bytes that follow in
<Data>. (VEE calculates this automatically.)

<Data> isastream of arbitrary bytes.

<END> indicates that EOI is asserted with the last data byte transmitted.

Appendix A 493

I/0 Transaction Reference
WRITE Transactions

CONTAINER Encoding

WRITE CONTAINER transactions are of thisform;
WRITE CONTAINER ExpressionList

ExpressionList isasingle expression or acomma-separated list of
expressions.

A WRITE CONTAINER transaction writeseachitemin ExpressionList
using a specia VEE text representation.

This representation retains all the VEE attributes associated with the data
type written, such as shape, size and name. Any WRITE CONTAINER data
can be retrieved without any loss of information using READ CONTAINER.

For example, this transaction:
WRITE CONTAINER 1.2345
writes:

(Real
(data 1.2345)
)

STATE Encoding

WRITE STATE transactions are of the form:
WRITE STATE [DownloadString]

DownloadStringisanoptiona string that allows you to specify a
download string if you have not previously specified one in the direct 1/0
configuration for the corresponding instrument. This explained in greater
detail in the sections that follow.

WRITE STATE transactionsareused by birect 1I/0 objectstodownload a
learn string to an instrument. Thereis exactly one learn string associated
with each instance of anpirect I/0 object. Thislearn string isuploaded by
clicking uploadinthepirect 1/0 object menu. Thelearn string contains
the null string before upload is selected for the first time.

The behavior of wrRITE STATE isaffected by thebirect 1/0
Configuration settingsfor Conformance and bownload String

494 Appendix A

I/0 Transaction Reference
WRITE Transactions

These settings are accessed viathe 1/0 = Instrument Manager menu
selection. If conformance iISIEEE 488,theWRITE STATE transaction
writesthe Download String followed by the learn string. If
Conformance iSIEEE 488.2, thelearn string is downloaded without any
prefix as defined by | EEE 488.2. See Controlling Instruments with VEE for
information about WRITE STATE transactions.

REGISTER Encoding

WRITE REGISTER isused towritevaluesintoaV Xl instrument's A16
memory.

WRITE REGISTER transactions are of thisform:

WRITE REG: SymbolicName ExpressionList INCR
Or
WRITE REG: SymbolicName ExpressionList

where:

SymbolicName isaname defined during configuration of aV XI|
instrument. The name refers to a specific address within ainstrument’s
register space. Specific datatypesfor WRITE REGISTER transactions are:

BYTE - 8 bit unsigned byte

WORD16 - 16-hit two’s complement integer

WORD32 - 32-hit two’s complement integer

REAL32 - 32-bit IEEE 754 floating point number

WORD32*2 - two 32-bit two’'s complement integers in adjacent elements
of an Int32 array.

B REAL64 - 64-bit

These datatypes are also specified during configuration of aV X1 instrument
and do not appear in the transaction.

ExpressionList isasingle expression or acomma-separated list of
expressions.

INCR specifies that array dataisto be written incrementally starting at the
register address specified by SymbolicName. The first element of the
array iswritten at the starting address, the second at that address plus an
offset equal to the length in bytes of the data type, etc. until al array

Appendix A 495

I/0 Transaction Reference
WRITE Transactions

elements have been written. If INCR is not specified in the transaction, the
entire array is written to the single location specified by Symbol i cName.

MEMORY Encoding

WRITE MEMORY isused towritevaluesinto aV Xl instrument's A24 or
A32 memory.

WRITE MEMORY transactions are of this form:

WRITE MEM: SymbolicName ExpressionList INCR
Or
WRITE MEM: SymbolicName ExpressionList

where:

SymbolicName isaname defined during configuration of aV XI|
instrument. The name refers to a specific address within ainstrument’s
extended memory. Specific datatypesfor WRITE MEMORY transactions are:

B BYTE - 8 bit unsigned byte

WORD16 - 16-hit two’s complement integer

WORD32 - 32-hit two’s complement integer

REAL32 - 32-bit IEEE 754 floating point number

WORD32*2 - two 32-bit two's complement integers in adjacent elements
of an Int32 array.

B REAL64 - 64-bit IEEE 754 floating point number.

These datatypes are also specified during configuration of aV X1 instrument
and do not appear in the transaction.

ExpressionList isasingle expression or acomma-separated list of
expressions.

INCR specifies that array dataisto be written incrementally starting at the
memory location specified by Symbol i cName. The first element of the
array iswritten at that location, the second at that |ocation plus an offset
egual to the length in bytes of the datatype, etc. until all array elements have
been written. If INCR isnot specified in the transaction, the entire array is
written to the single memory location specified by Symbol i cName.

496 Appendix A

I/0 Transaction Reference
WRITE Transactions

IOCONTROL Encoding

WRITE IOCONTROL transactions are of thisform;

WRITE IOCONTROL CTL ExpressionList
—or-
WRITE IOCONTROL PCTL ExpressionList

ExpressionList isasingle expression or acomma-separated list of
expressions.

IOCONTROL encoding isused only for Direct 1/0to GPIO interfaces.
This transaction sets the control lines of a GPIO interface;
WRITE IOCONTROL CTL a

VEE converts the value of a to an Integer. The least X significant bits of the
Integer value are mapped to the control lines of the interface, where X isthe
number of control lines.

For example, the HP 98622A GPI O interface uses two control lines, cTLo
and cTL1. See Table A-12.

Table A-12. HP 98622A GPIO Control Lines

Value Written CTL1 CTLO
0 0 0
1 0 1
2 1 0
3 1 1

In Table A-12, 1 indicates a control lineis asserted and o indicatesit is
cleared. This transaction controls the computer-driven handshake line of a
GPIO interface:

WRITE IOCONTROL PCTL a

If the value of a ishon-zero, the PCTL lineisset. If the valueis zero, no
action istaken. PCTL is cleared automatically by the interface when the
peripheral meets the handshake requirements.

Appendix A 497

I/0 Transaction Reference
READ Transactions

READ Transactions

See Table A-13 for Read Encodings and Formats.

Table A-13. READ Encodings and Formats

Encodings

Formats

TEXT

CHAR

TOKEN
STRING
QUOTED STRING
INT16
INT32
OCTAL

HEX

REAL32
REAL64
COMPLEX
PCOMPLEX
COORD

TIME STAMP

BINARY

STR

BYTE
INT16
INT32
REAL32
REALG64
COMPLEX
PCOMPLEX
COORD

BINBLOCK

BYTE
INT16
INT32
REAL32
REALG64
COMPLEX
PCOMPLEX
COORD

CONTAINER

Not Applicable

498

Appendix A

I/0 Transaction Reference
READ Transactions

Table A-13. READ Encodings and Formats

Encodings Formats

IOSTATUS Not Applicable

REGISTER? BYTE
WORD16

WORD32
REAL32

MEMORY? BYTE
WORD16

WORD32
WORD32*2
REAL32
REALG64

a. Direct I/0 to VXI only.

TEXT Encoding

READ TEXT transactions can read and discard what isirrelevant and
selectively read what isimportant. Thisworks well most of the time, but
occasionally you must analyze very carefully what VEE considersto be
irrelevant and what it considers to be important.

Thiswill rarely (if ever) be aproblem if you are reading text files written by
VEE aslong as you read them using the same format used to write them.
Problems are most likely to occur when you are trying to import a file from
another software application.

Table A-14 describesREAD TEXT behavior in ageneral way only. Be sureto
read al the sectionsthat follow to understand all the possible variations.

Appendix A 499

I/0 Transaction Reference
READ Transactions

Table A-14. Formats for READ TEXT Transactions

Format

Description

CHAR

Reads any 8-bit character.

TOKEN

Reads a contiguous list of characters as a unit called a
token. Tokens are separated by specified delimiter
characters (you specify the delimiters). For example, in
normal written English, words are tokens and spaces are
delimiters.

STRING

Reads a list of 8-bit characters as a unit. Most control
characters are read and discarded. The end of the string
is reached when the specified number of characters has
been read or when a newline character is encountered.

QSTRING

Reads a list of 8-bit characters that conform to the IEEE
488.2 arbitrary length string defined by a starting and
ending double quote character (ASCII 34). Control
characters are not discarded. Escaped characters are
expanded to a corresponding control character. The end
of the string is reached when the double quote character
(ASCII 34) has been read.

INTEGER16

Reads a list of characters and interprets them as a
decimal or non-decimal representation of a 16-bit integer.
The only characters considered to be part of a decimal
INTEGER are 0123456789-+. VEE recognizes the
prefix 0x (hex) and all the Non-Decimal Numeric formats
specified by IEEE 488.2: #H (hex), #0 (octal), #B (binary).

INTEGER32

Reads a list of characters and interprets them as a
decimal or non-decimal representation of a 32-bit integer.
The only characters considered to be part of a decimal
INTEGER are 0123456789-+. VEE recognizes the
prefix 0x (hex) and all the Non-Decimal Numeric formats
specified by IEEE 488.2: #H (hex), #0Q (octal), #B (binary).

OCTAL

Reads a list of characters and interprets them as the
octal representation of an integer. The characters
considered to be part of an OCTAL are 01234567. VEE
also recognizes the IEEE 488.2 Non-Decimal Numeric
prefix #Q for octal numbers.

500

Appendix A

I/0 Transaction Reference
READ Transactions

Table A-14. Formats for READ TEXT Transactions

Format Description

HEX Reads a list of characters and interprets them as the
hexadecimal representation of an integer. The only
characters considered to be part of a HEX are
0123456789abcdefABCDEF. The character
combination 0x is the default prefix; it is not part of the
number and is read and ignored. VEE also recognizes 0x
and the IEEE 488.2 Non-Decimal Numeric prefix #H for
hexadecimal numbers.

REAL32 Reads a list of characters and interprets them as the
decimal representation of a Real 32-bit (floating-point)
number. All common notations are recognized including
leading signs, signed exponents and decimal points. The
characters recognized to be part of a REAL32 are
0123456789-+.Ee.

VEE also recognizes certain characters as suffix
multipliers for Real numbers (see Table A-15 on
page 516).

REALG4 Reads a list of characters and interprets them as the
decimal representation of a Real 64-bit (floating-point)
number. All common notations are recognized including
leading signs, signed exponents and decimal points. The
characters recognized to be part of a REAL are
0123456789-+.Ee.

VEE also recognizes certain characters as suffix
multipliers for Real numbers (see Table A-15 on
page 516).

COMPLEX Reads the equivalent of two REAL64s and interprets
them as a complex number. The first number read is the
real part and the second number read is the imaginary
part.

Appendix A 501

General Notes for
READ TEXT

I/0 Transaction Reference
READ Transactions

Table A-14. Formats for READ TEXT Transactions

Format Description

PCOMPLEX Reads the equivalent of two REAL64s and interprets
them as a complex number in polar form. Some
engineering disciplines refer to this as "phasor notation".
The first number read is considered to be the magnitude
and the second is the angle. You may specify units of
measure for phase in the transaction.

COORD Reads the equivalent of two or more REAL64s and
interprets them as rectangular coordinates.

TIME STAMP | Reads one of the specified VEE time stamp formats
which represent the calendar date and/or time of day.

Read to End. TheReAD TEXT formats support a choice between reading
aspecified number of elements or reading until EOF is encountered. In a
transaction, NumEIements iSasingle expression or acomma-separated
list of expressions that specifies the dimensions of each variable in
VarList.

If the first expression is an asterisk (*), the transaction will read data until an
EOF is encountered. Read to end is supported only for:

From File

From String

From StdIn

Execute Program

To/From Named Pipe

To/From Socket

To/From Rocky Mountain Basic transactions.

Only the first dimension can have an asterisk rather than a number.
For example, the following transaction reading from afile:
READ TEXT a REAL ARRAY:*,10

will read until EOF is encountered resulting in atwo dimensional array with
ten columns. The number of rows is dependent on the amount of datain the
file. The total number of data elements read must be evenly divisible by the

502 Appendix A

I/0 Transaction Reference
READ Transactions

product of the known dimension sizes, in this example: 10. If this criteriais
not met, an error will occur.

Number of CharactersPer READ. TheseREAD TEXT formats support a
choice between DEFAULT NUM CHARS and MAX NUM CHARS:

STRING
INT16
INT32
OCTAL
HEX
REAL32
REAL64

This section discusses the effects of DEFAULT NUM CHARS and
MAX NUM CHARS on these formats.

The basic difference between DEFAULT NUM CHARS and MAX NUM CHARS
isthis:

B DEFAULT NUM CHARS causesVEE to read and ignore most characters
that do not appear to be part of the number or string it expects.

B MAX NUM CHARS allowsyou to read up to the specified number of 8-bit
characters in an attempt to build the type of number or string specified.
VEE stops reading characters as soon as the READ is satisfied. All
characters are read and V EE attempts to convert them to the data type
specified in the transaction.

If you specify DEFAULT NUM CHARS, the transaction reads as many
characters asit requires to fill each variable. Characters that are not
meaningful to the specified datatype are read and ignored.

If you specify MAX NUM CHARS, VEE makes no attempt to sort out
characters that are not meaningful to the data type specified.

If non-meaningful characters are encountered, they are read and may later
generate an error.

In either case, newline and end-of-file are recognized as terminators for
strings or numbers. For numeric formats, white space encountered before
any significant characters (digits) is read and ignored. After reading
significant characters, white space or other non-numeric characters

Appendix A 503

I/0 Transaction Reference
READ Transactions

terminate the current READ. These are the general behaviors. Read the
examples that follow for additional detail.

Consider this example that distinguishes between the behaviors of DEFAULT
NUM CHARS and MAX NUM CHARS using INT32 format. Assume you are
trying to read afile containing this data:

bird dog cat 12345 horse

It isimpossible to extract the integer 12345 from this datawith a

READ TEXT INT32 transaction usingMAX NUM CHARS nO matter how
many characters are read. Thisisbecause the charactersbird dog cat are
alwaysread before the digits, they cannot be converted to an Integer and this
generates an error.

DEFAULT NUM CHARS Will extract theinteger 12345 by reading and
ignoring bird dog cat and treating the white space following 5 asa
delimiter.

Effects of Quoted Strings. The presence of quoted strings affects the
behavior of READ TEXT QSTR and READ TEXT TOKEN for all I/O pathsand
READ TEXT STRING for instrument or interface 1/O. In this discussion, a
quoted string means a set of characters beginning and ending with a double
guote character and no embedded (non-escaped) double quote characters.
The double quote character is ASCII 34 decimal. The presence of double
quotes affects the way that these READ transactions group characters into
strings and tokens and how embedded control and escape characters are
handled.

In this discussion, the terms control character and escape character have
specific meaning. A control character isasingle byte of data corresponding
to one of the ASCII characters 0-31 decimal. For example, linefeed is ASCII
10 decimal and the symbol <1.F> denotes linefeed character in this
discussion. The string \n is a human-readabl e escape character representing
linefeed that is recognized by VEE.

The behavior of certain transactions when dealing with quoted stringsis
dependent on the particular I/O path. For all 1/0 paths except instrument
I/O, READ TEXT QSTR treats quoted strings specially. For al 1/0 paths
except instrument 1/O, READ TEXT STRING does not recognize quoted
strings.

504 Appendix A

I/0 Transaction Reference
READ Transactions

For instrument I/O thereisno READ TEXT QSTR transaction. Instead, READ
TEXT STRING recognizes quoted stings and deals with them accordingly.
Thisis done since quoted strings have special meaning in the IEEE 488.2
specification. For all 1/0 paths including instruments, READ TEXT TOKEN
treats quoted strings specially. In the following discussions, we will assume
the I/O path to befile I/O.

When a string does not begin and end with double quotes, control characters
other than linefeed are read and discarded by READ TEXT STRING
transactions and by READ TEXT TOKEN transactions that specify SPACE
DELIM. In both STRING and TOKEN transactions, linefeed terminates the
READ. Escape character sequences, such as \n (newline) are simply read as
the two characters \ and n.

Within double quoted strings, READ TEXT QSTR and READ TEXT TOKEN
will read dl enclosed characters (including control characters) and store
them in the input variable. Embedded linefeeds are read and treated like any
other character - they do not terminate the current READ. Escape character
sequences are read and translated to their single-character counterpart.

Grouping effects are best explained by using an example. For the discussion
in the rest of this section, the data being read is a file with the contents
shown in Figure A-26.

"This is in quotes." This is not.

Figure A-26. Quoted and Non-Quoted Data

Assume that you read the file shown in Figure A-26 using From File with
these transactions:

READ TEXT x QSTR
READ TEXT y QSTR

After reading thefile, the results are:

x = This is in quotes.
y = This is not.

The double quotes are interpreted as delimiters and do not appear in the
input variable.

Appendix A 505

CHAR Format

I/0 Transaction Reference
READ Transactions

Now assume that you read the file shown in Figure A-26 using From File
with these transactions:

READ TEXT x QSTR MAXFW:4
READ TEXT y QSTR

After reading thefile, the results are:

This
This is not.

x
Y

Here the double quotes are still acting a delimiters. The first transaction
reads from double quote to double quote and assigns the first four characters
to x. Thisleavesthe file's read pointer positioned before the second
occurrence of This. The second transaction reads the same string as before.

Next, assume that you read the file shown in Figure A-26 using From File
with these transactions:

READ TEXT x TOKEN
READ TEXT y QSTR

After reading thefile, the results are:

x
Y

Here, the double quotes effectively make the entire first sentenceinto a
single token. Even though default TokEN delimiter is white space, the entire
quoted string is treated as a single token. In addition, TOKEN reads and
discards the double quote characters.

This is in quotes.
This is not.

READ TEXT CHAR transactions are of thisform:
READ TEXT VarList CHAR:NumChar ARRAY:NumStr

VarList isasingle Text variable or acomma-separated list of Text
variables.

NumChar specifies the number of 8-bit charactersthat must read to fill each
element of each variablein VarList.

NumStrisasingle expression or acomma-separated list of expressions that
specifies the dimensions of each variablein varList. If thetransactionis
configured to read a scalar, the ARRAY keyword does not appear in the
transaction.

506 Appendix A

I/0 Transaction Reference
READ Transactions

ARRAY:1 isaone-dimensional array with one element. VEE makes a
distinction between scalars and one-dimensional arrays containing only one
element.

cHaR format is useful when you wish to simply read one character at atime,
or when you need to read every character without ignoring any incoming
data.

This transaction reads two two-dimensional Text arrays. Each element in
each array contains two characters.

READ TEXT X,Y CHAR:2 ARRAY:2,2
If afileread by the previous transaction contains these characters:
<space>ABCDEFG"AB"<LF>'CD

the variables x and v contain these values after the READ:

X [0 0] = <spaces>A
X [0 1] = BC

X [1 0] = DE

X [1 1] = FG

Y [0 0] = "A

Y [0 1] = B"

Y [1 0] = <LF>’

Y [1 1] = CD

The symbol <space> meansthe single character, space (ASCI| 32 decimal).
The symbol <LF> meansthe single character, linefeed (ASCII 10 decimal).
Space, linefeed and doubl e quotes are read without any special consideration
or interpretation.

Appendix A 507

TOKEN Format

I/0 Transaction Reference
READ Transactions

READ TEXT TOKEN transactions are of this form:
READ TEXT VarList TOKEN Delimiter ARRAY:NumElements

VarList isasingle Text variable or acomma-separated list of Text
variables.

Delimiter specifiesthe combinations of characters that terminate
(delimit) each token.

NumElements isasingle expression or acomma-separated list of
expressions that specifies the dimensions of each variablein varList. If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. ARRAY : 1 isaone-dimensiond array with one
element. VEE makes a distinction between scalars and one-dimensional
arrays containing only one element.

TOKEN format allowsyou to define the delimiter (boundary) for tokens using
one of these choicesfor Delimiter:

B SPACE DELIM
B INCLUDE CHARS
B EXCLUDE CHARS

Thefollowing discussion of delimiters explains how the choice of delimiters
affects reading afile with the contents shown in Figure A-27:

A phrase.

"A phrase."

Tab follows.
XOXXOOXXX0O00XXXX
XAXXBCXXXDEF

Figure A-27. READ TOKEN Data
The file contains only the letter o, not the digit zero.

Thereis an invisible linefeed character at the end of each of the first four
lines of thefilein Figure A-27 that showsthefile asit would appear in atext
editor such asvi.

SPACE DELIM. If you use sSPACE DELIM, tokens are terminated by any
white space. White space includes spaces, tabs, newline and end-of-file. This

508 Appendix A

I/0 Transaction Reference
READ Transactions

corresponds roughly to words in written English. Using SPACE DELIM, you
could read afile containing a paragraph of text and separate out individual
words.

Double quoted strings receive specia treatment. Double quoted strings are
read as a single token and the double quotes are stripped away. Control
characters (ASCII 0-31 decimal) embedded in double-quoted strings are
returned in the output variable. Escape characters (such as \n) embedded in
double-quoted strings are converted into their equivalent control characters.

This specia treatment of double-quoted strings applies only to SPACE
DELIM transactions. INCLUDE CHARS and EXCLUDE CHARS treat double
quotes, escapes and control characters the same as any other character.

If you read the datain Figure A-27 using SPACE DELIM with this
transaction:

READ TEXT a TOKEN ARRAY:8

the variable a contains these values:

alo] = A

al[l] = phrase.

a[2] = A phrase.

al[3] = Tab

al4] = follows

al5] = .

al6] = XOXXOOXXXOOOXXXX
al[7] = XAXXBCXXXDEF

INCLUDE CHARS. If you use INCLUDE CHARS, you can specify alist of
characters to be "included" in tokens returned by the READ. These specified
characters will be the only characters returned in any token. Any character
other than the specified INCLUDE characters terminates the current token.
The terminating characters are not included in the token and are stripped

away.

Appendix A 509

I/0 Transaction Reference
READ Transactions

If VEE reads the data shown in Figure A-27 using INCLUDE CHARS With
this transaction:

READ TEXT a TOKEN INCLUDE:"X" ARRAY:7

the variable a contains these values:

alo] = X
all]l] = XX
al2] = XXX
al[3] = XXXX
al4] = X
al[5] = XX
ale] = XXX

If VEE reads the data shown in Figure A-27 using INCLUDE CHARS With
this transaction:

READ TEXT a TOKEN INCLUDE:"OXZ" ARRAY:4

the variable a contains these values:

al[0] = XOXXO0OXXXO0OOXXXX
alll] = X

al2] = XX

al[3] = XXX

Thefirst character in the INCLUDE list isthe letter o, not the digit zero.

Assume that you are trying to read afile containing the datain Figure A-28.

111 222 333 444 555

Figure A-28. READ TOKEN Data
If you try to read the file in Figure A-28 using this transaction:
READ TEXT x,y,z TOKEN INCLUDE:"1234567890"

the Text variables x, y and z will contain these values:

x = 111
y = 222
z = 333

510 Appendix A

I/0 Transaction Reference
READ Transactions

Another way to do thisisto specify an ARRAY greater than one and read data
into an array. For example, if you read the datain Figure A-28 using this
transaction:

READ TEXT x TOKEN INCLUDE:"1234567890" ARRAY:3

the Text variable x contains these val ues;

x[0] = 111
x[1] = 222
x[2] = 333

EXCLUDE CHARS. If you use EXCLUDE CHARS, you can specify alist
of characters, any one of which will terminate the current token. The
terminating characters are not included in the token. They are read and
discarded.

If you read the data shown in Figure A-27 using EXCLUDE with this
transaction:

READ TEXT a TOKEN EXCLUDE:"X" ARRAY:8

the variable a contains these values:

al[0] = A phrase.<LF>"A phrase."<LF>Tab follows .<LF>
ali1] =0

al2] = 00

al[3] = 000

al4] = <LF>

a[5] = A

al6] = BC

al7] = DEF<LF>

Assume the data shown in Figure A-29 is sent to VEE from an instrument.

++1.23++4.98++0.45++2.34++0.01++23.45++12.2++

Figure A-29. READ TOKEN Data

Appendix A 511

Note

STRING Format

I/0 Transaction Reference
READ Transactions

If VEE reads the data in Figure A-29 with this transaction:
READ TEXT x TOKEN EXCLUDE:"+" ARRAY:7

the variable x will contain these values:

x[0] = null string (empty)
x[1] = 1.23
x[2] = 4.98
x[3] = 0.45
x[4] = 2.34
x[5] = 0.01
x[6] = 23.45

Even though seven "numbers' were available, only six wereread. At theend
of thistransaction, VEE hasread seven tokens terminated by the +, including
the first character which was terminated before it was filled with any data.

The behavior of EXCLUDE CHARS is different between VEE 5 Execution
Mode and later and VEE 4 Execution Mode and earlier. See “READ TEXT
Transactions’ on page 33 for a description of this difference.

READ TEXT STRING transactions are of thisform:

READ TEXT VarList STR ARRAY:NumElements

—or-

READ TEXT VarList STR MAXFW:NumChars ARRAY:NumElements
VarList isasingle Text variable or acomma-separated list of Text
variables.

NumChars specifies the maximum number of 8-bit characters that can be
read in an attempt to build a string.

NumElements isasingle expression or acomma-separated list of
expressions that specifies the dimensions of each variablein varList. If
the transaction is configured to read a scalar, the ARrRAY keyword does not
appear in the transaction. ARRAY : 1 isaone-dimensiond array with one
element. VEE makes a distinction between scalars and one-dimensional
arrays containing only one element.

Thistransaction reads all incoming characters and returns strings. Leading
spaces are deleted. The following discussion pertainsto instrument 1/O paths

512 Appendix A

I/0 Transaction Reference
READ Transactions

only, such as GPIB or VXI. All other 1/0O paths, such as files or namel2-
pipes, will not treat Quoted Strings specially. See * Effects of Quoted
Strings” on page 504 for details about the effects of double quoted strings
ONREAD TEXT STRING.

Effects of Control and Escape Characters. In thisdiscussion, the terms
control character and escape character have specific meaning. A control
character is a single byte of data corresponding to one of the ASCI|
characters 0-31 decimal. For example, linefeed is ASCII 10 decimal and the
symbol <LF> denotes linefeed character inthisdiscussion. Thestring \n isa
human-readabl e escape character representing linefeed that is recognized by
VEE. VEE uses escape characters to represent control characters within
guoted strings.

Control characters and escape characters are handled differently depending
on whether or not they appear within double quoted strings.

Outside double quoted strings, control characters other than linefeed areread
and discarded. Linefeed terminates the current string. Escape characters,
such as \n, areread as two individual characters (\ and n).

Within double quoted strings, control characters and escape characters are
read and included in the string returned by the READ. A linefeed within a
double quoted string does not terminate the current string. Escape characters,
such as \n, are interpreted as their single character equivalent (<LF>) and
are included in the returned string as a control character.

Assume you want to read the following string data using READ TEXT
STRING transactions:

Simple string.

Random \n % $ * ‘A!

"In quotes."

"In quotes

with control."

"In guotes\nwith escape."

Appendix A 513

I/0 Transaction Reference
READ Transactions

If you read the string data using this transaction:
READ TEXT x STR ARRAY:5
the variable x contains these values:

] = Simple string.
] = Random \n % $ * ‘A’
al[2] = In quotes.
] = In quotes<LF>with control.
] = In quotes<LF>with escape.

If you read the same string data using this transaction:
READ TEXT x STR MAXFW:16 ARRAY:5

the variable x contains these values:

al[0] = Simple string.

all] = Random \n % $ *
al2] = ‘A"

a[3] = In quotes.

a[4] = In quotes<LF>with c

The transaction terminates the current READ whenever 16 characters have
beenread (a[11) or when anon-quoted <L.F> (a[2]1) isread. Double-
guoted strings are read from double quote to double quote and the first 16
delimited characters are returned (a [41).

QUOTED STRING READ TEXT QUOTED STRING transactions are of thisform:

Format ,
READ TEXT VarList QSTR ARRAY:NumElements

—or-

READ TEXT VarList QSTR MAXFW:NumChars ARRAY:NumElements
VarList isasingle Text variable or acommarseparated list of Text
variables.

NumChars specifies the maximum number of 8-bit characters that can be
read in an attempt to build a string.

NumElements isasingle expression or acomma-separated list of
expressions that specifies the dimensions of each variablein varList. If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. ARRAY : 1 isaone-dimensional array with one

514 Appendix A

INT16 and INT32
Formats

I/0 Transaction Reference
READ Transactions

element. VEE makes a distinction between scalars and one-dimensional
arrays containing only one element.

This transaction reads all incoming characters and returns strings. The
following discussion pertains to al non-instrument 1/0 paths. Instrument
1/0O paths do not implement the READ TEXT QSTR transaction. See “Effects
of Quoted Strings’ on page 504 for details about the effects of double quoted
strings oNn READ TEXT STRING.

Also see “Effects of Control and Escape Characters’ on page 513.

READ TEXT INT16 and READ TEXT INT32 transactions are of thisform:

READ TEXT VarList INT16(or INT32) ARRAY:NumElements

—or-

READ TEXT VarList INT16 (or INT32) MAXFW:NumChars
ARRAY: NumEIements

VarList isasingle Integer variable or acomma-separated list of Integer
variables.

NumChars specifies the maximum number of 8-bit characters that can be
read in an attempt to build a number.

NumStrisasingle expression or acomma-separated list of expressions that
specifies the dimensions of each variablein varList. If thetransactionis
configured to read a sca ar, the aArRrAY keyword does not appear in the
transaction. ARRAY : 1 isaone-dimensiona array with one element. VEE
makes a distinction between scalars and one-dimensional arrays containing
only one element.

READ TEXT INT1e6 transactionsinterpret incoming charactersas 16-bit,
two's complement integers. The valid range for these integersis

32767 to -32768. Any numbers outside this range wrap around so thereis
never an overflow condition. For example, 32768 isinterpreted as -32768.

READ TEXT INT32 transactionsinterpret incoming characters as 32-hit,
two's complement integers. The valid range for these integersis

2 147 483 647 to -2 147 483 648. Any numbers outside this range wrap
around so there is never an overflow condition. For example, 2 147 483 648
isinterpreted as-2 147 483 648.

Asit starts to build a number, VEE discards any leading characters that are
not recognized as part of a number. Once VEE starts building a number, any

Appendix A 515

I/0 Transaction Reference
READ Transactions

character that is not recognized as part of a number terminates the REaD for
that number. Table A-15 shows the only combinations of characters that are
recognized as part of an INT16 Or INT32.

Table A-15. Characters Recognized as Part of an INT16 or INT32:

Notation Characters Recognized

Decimal Valid characters are £0123456789. Leading zeros
are not interpreted as an octal prefix as they are in
VEE data entry fields.

VEE hexadecimal | VEE interprets 0x as a prefix for a hexadecimal
number. Valid characters following the prefix are
0123456789aAbBcCdDeELF.

IEEE 488.2 binary | VEE interprets #b or #B as a prefix for a binary
number. Valid characters following the prefix are 0
and 1.

IEEE 488.2 octal VEE interprets #qg or #Q as a prefix for an octal
number. Valid characters following the prefix are

01234567.
IEEE 488.2 VEE interprets #h or #H as a prefix for a
hexadecimal hexadecimal number. Valid characters following the

prefix are 0123456789aAbBcCdDeEfF.

All the following notations are interpreted as the Integer value 15 decimal:

15

+15
015
OxF
o0xf
#b1111
#017
#hF

516 Appendix A

OCTAL Format

I/0 Transaction Reference
READ Transactions

READ TEXT OCTAL transactions are of this form:

READ TEXT VarList OCT ARRAY:NumElements
—or-
READ TEXT VarList OCT MAXFW:NumChars

where:

ARRAY: NumEIlements

VarList isasingle Integer variable or acomma-separated list of Integer
variables.

NumChars specifies the number of 8-bit characters that can beread in an
attempt to build a number.

NumElements isasingle expression or acomma-separated list of
expressions that specifies the dimensions of each variablein varList. If
the transaction is configured to read a scalar, the ARrRAY keyword does not
appear in the transaction. ARRAY : 1 iSaone-dimensional array with one
element. VEE makes a distinction between scalars and one-dimensional
arrays containing only one element.

READ TEXT OCTAL transactions interpret incoming characters as octal
digits representing 32-bit, two’s complement integers. The valid range for
these integersis 2 147 483 647 decimal to -2 147 483 648 decimal.

If the transaction specifiesaMax NUM CHARS (MAXFW), the octal number
read may contain more than 32 bits of data. For example, assume VEE reads
the following octal data:

377237456214567243777
using this transaction:
READ TEXT x OCT MAXFW:21

VEE reads all the digitsin octal data, but uses only the last 11 digits
(14567243777) to build anumber for the value of x. Thisis because each
digit corresponds to 3 bits and the octal number must be stored in an VEE
Integer, which contains 32 bits. Eleven octal digitsyield 33 bits and the most
significant bit is dropped to fit the value in an VEE Integer. Thereis no
possibility of overflow.

Appendix A 517

HEX Format

I/0 Transaction Reference
READ Transactions

If the transaction specifieSDEFAULT NUM CHARS, it will continue to read
characters until it builds enough numbersto fill each variablein varList.
Linefeed characters will not terminate number building early. For example,
this transaction:

READ TEXT x OCT ARRAY:4

interprets each line of the following octal data as the same set of four octal
numbers:

0345 067 003<LF>0377<LF>
345 67 3 377<EOQOF>
345,67,3,377,45,67<EQOF>

The symbol <LF> represents the single character linefeed (ASCII 10
decimal). The symbol <EOF> represents the end-of-file condition.

READ TEXT HEX transactions are of this form:

READ TEXT VarList HEX ARRAY:NumElements

—or-

READ TEXT VarList HEX MAXFW:NumChars ARRAY:NumElements
VarList isasingle Integer variable or acomma-separated list of Integer
variables.

NumChars specifies the number of 8-bit characters that can beread in an
attempt to build a number.

NumElements isasingle expression or acomma-separated list of
expressions that specifies the dimensions of each variablein varList. If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. ARRAY : 1 isaone-dimensiona array with one
element. VEE makes a distinction between scalars and one-dimensional
arrays containing only one element.

READ TEXT HEX transactionsinterpret incoming characters as hexadecimal
digits representing 32-bit, two’'s complement integers. The valid range for
these integersis 2 147 483 647 decimal to -2 147 483 648 decimal.

518 Appendix A

REAL32 and
REAL64 Format

I/0 Transaction Reference
READ Transactions

If the transaction specifiesaMAX NUM CHARS (MAXFW), the hexadecimal
number read may contain more than 32 bits of data. For example, assume
VEE reads the following hexadecimal data:

ad2469Ff725BCdef37964 hexadecimal data
using this transaction:
READ TEXT x HEX MAXFW:21

VEE reads al the digitsin the hexadecimal data, but uses only the last 8
digits (def37964) to build anumber for the value of x. Thisis because each
digit corresponds to 4 bits and the hexadecimal number must be stored in an
VEE Integer, which contains 32 bits. Eight hexadecimal digitsyields exactly
32 hits. There is no possibility of overflow.

Assume V EE reads the same hexadecimal data, but with a different Max
NUM CHARS, asin thistransaction:

READ TEXT x HEX MAXFW:3 ARRAY:7

In this case, the transaction reads the same data and interprets it as seven
Integers, each comprising three hexadecimal digits.

If the transaction specifieSDEFAULT NUM CHARS, it will continue to read
characters until it builds enough numbersto fill each variablein varList.
Each number will read exactly 8 hexadecimal digits. Linefeed characters
will not terminate number building early.

Assume V EE reads the same hexadecimal data, but with
DEFAULT NUM CHARS, asin thistransaction:;

READ TEXT x HEX ARRAY:2

In this case, the transaction reads the same data and interpretsit astwo
Integers, each comprising eight hexadecimal digits. The last five digits
(37946) arenot read.

READ TEXT REAL32 and READ TEXT REALe4 transactions are of thisform:

READ TEXT VarList REAL32 (or REAL64) ARRAY:NumElements
—or-
READ TEXT VarList REAL32 (or REAL64) MAXFW:NumChars

Appendix A 519

I/0 Transaction Reference
READ Transactions

ARRAY: NumEIements

VarList isasingle Real variable or a comma-separated list of Real
variables.

NumChars specifies the maximum number of 8-bit characters that can be
read in an attempt to build a number.

NumElements isasingle expression or acomma-separated list of
expressions that specifies the dimensions of each variablein varList. If
the transaction is configured to read a scalar, the ARrRAY keyword does not
appear in the transaction. ARRAY : 1 isaone-dimensiona array with one
element. VEE makes a distinction between scalars and one-dimensional
arrays containing only one element.

The decimal number read by this transaction isinterpreted as a VEE
Real32, Which isa32-bit IEEE 754 floating-point number. The range of
these numbersis:

-1.175 494 35E-38
-3.402 823 47E+38
to

3.402 823 47E+38
1.175 494 35E-38

The decimal number read by this transaction isinterpreted asaVEE
Reale4, Which isa64-bit IEEE 754 floating-point number. The range of
these numbersis:

-1.797 693 134 862 315E+308
-2.225 073 858 507 202E-307
to

2.225 073 858 507 202E-307
1.797 693 134 862 315E+308

If the transaction specifiesaMaX NUM CHARS (MAXFW), the Real number
read may contain more than 17 digits of data. For example, assume VEE
reads the following real data:

1.234567890123456789 real number data
using this transaction:

READ TEXT x REAL64 MAXFW:19

520 Appendix A

I/0 Transaction Reference
READ Transactions

VEE readsdl the digitsintherea data, but usesonly the 17 most-significant
digits of the mantissato build a number for the value of x. Thisis because
each Real contains a 54-bit mantissa, which is equivalent to more than 16
but less than 17 decimal digits. As aresult, x has the value
1.2345678901234567.

Text to Real conversions are not guaranteed to yield the same value to the
least-significant digit. Comparisons of the two least-significant bitsis
inadvisable.

Assume V EE reads the same real number data, but with adifferent Max NUM
CHARS, asin this transaction:

READ TEXT x REAL64 MAXFW:6 ARRAY:3

In this case, the transaction reads the same data and interpretsit as 3 Real
numbers, each comprised of six decimal characters. The last two characters
are not read.

If the transaction specifieSDEFAULT NUM CHARS, it will continue to read
characters until it builds enough numbersto fill each variablein varList.
Each number will read at most 17 decimal digits. Linefeed characters, white
space and other non-numeric characters will terminate number building
before 17 digits have been read.

READ TEXT REAL64 and REAL32 transactions recognize most commonly
used decimal notations for Real numbers including leading signs, decimal
points and signed exponents. The characters +-.0123456789Ee are
recognized as valid parts of a Rea number by all READ TEXT REAL
transactions. If the transaction specifies DEFAULT NUM CHARS, the suffix
characters shown in Table A-16 are also recognized. The suffix character
must immediately follow the last digit of the number with no intervening
white space.

Appendix A 521

I/0 Transaction Reference
READ Transactions

Table A-16. Suffixes for REAL Numbers

Suffix Multiplier
P 10
T 10%2
G 109
M 106
k orkK 103
m 103
u 106
n 10°°
P 1012
f 10—15

The following Text data represents six real numbers:

1001
+1001.
1001.0
1.001E3
+1.001E+03
1.001K

If VEE readsthe real text datawith this transaction:

READ TEXT x REAL64 ARRAY:6
then each element of the Real variable x containsthe value 1001.
If VEE reads the same data with this transaction:

READ TEXT x REAL64 MAXFW:20 ARRAY:6

the first five elements of the Real variable x contain the value 1001 and the
sixth element contains thevalue 1 .001.

522 Appendix A

COMPLEX,
PCOMPLEX and
COORD Formats

I/0 Transaction Reference
READ Transactions

COMPLEX, PCOMPLEX and cOOrD correspond to the VEE multi-field data
types with the same names. The behavior of all three READ formatsis very
similar. The behaviors described in this section apply to all three formats
except as noted.

Just as the VEE data types Complex, PComplex and Coord are composed of
multiple Real64 numbers, the COMPLEX, PCOMPLEX and COORD formats are
compound forms of the REAL64 format. Each constituent Real value of the
multi-field data typesis read using the same rules that apply to an individual
REAL64 formatted value.

COMPLEX Format. READ TEXT COMPLEX transactions are of thisform:
READ TEXT VarList CPX ARRAY:NumElements

Each READ TEXT COMPLEX transaction reads the equivalent of two REAL
formatted numbers. The first number read isinterpreted asthe real part and
the second number read is interpreted as the imaginary part.

PCOMPLEX Format. READ TEXT PCOMPLEX transactions are of this
form:

READ TEXT VarList PCX:PUnit ARRAY:NumElements

PUnit specifies the units of angular measure in which the phase of the
PComplex is measured.

Each READ TEXT PCOMPLEX transaction reads the equivalent of two REAL
formatted numbers. The first number read isinterpreted as the magnitude
and the second number read is interpreted as the phase.

If any transaction reading COMPLEX, PCOMPLEX, Of COORD formats
encounters an opening parenthesis, it expects to find a closing parenthesis.

Assume you want to read a file containing the following data containing
parentheses:

(1.23 , 3.45 (6.78 , 9.01) (1.23 , 4.56)
If VEE reads the data with this transaction:
READ TEXT x,y CPX

the variables x and y contain these Complex values:

Appendix A 523

I/0 Transaction Reference
READ Transactions

x = (1.23 , 3.45)
y = (1.23 , 4.56)

The transaction read past 6. 78 and 9. 01 to find the closing parenthesis. If
parentheses had been omitted from the data entirely, y would have the value
(6.78 , 9.01).

COORD Format. READ TEXT COORD transactions are of this form:
READ TEXT VarList COORD:NumFields ARRAY:NumElements

VarList isasingle Coord variable or acomma-separated list of Coord
variables.

NumFields isasingle variable or expression that specifies the number of
rectangular dimensions in each Coord vaue. This vaue must be 2 or more
for the READ to execute without error.

NumElements isasingle expression or acomma-separated list of
expressions that specifies the dimensions of each variablein varList. If
the transaction is configured to read a scalar, the ARrRAY keyword does not
appear in the transaction. ARRAY : 1 isaone-dimensional array with one
element. VEE makes a distinction between scalars and one-dimensional
arrays containing only one element.

BINARY Encoding

READ BINARY transactions are of thisform:
READ BINARY VarList DataType ARRAY:NumEIlements

VarList isasingle variable or acomma-separated list of variables.

DataType isone of thefollowing pre-defined formats corresponding to the
VEE data type with the same name:

BYTE - 8-bit unsigned byte

INT16 - 16-hit two's complement integer

INT32 - 32-bit two’'s complement integer
REAL32 - 32-bit IEEE 754 floating-point number
REAL64 - 64-bit IEEE 754 floating-point number
STRING - null terminated string

COMPLEX - equivalent to two REAL64S

524 Appendix A

Note

I/0 Transaction Reference
READ Transactions

B PCOMPLEX -equivalent to two REAL64S
B COORD - equivalent to two or more REAL64S

VEE 5 and lower Execution Modes store and manipulate all integer values
asthe INT32 datatype and all real numbers asthe Real datatype, aso
known asrEAL64. Thus, the INT16 and REAL32 datatypesare provided for
1/0 only. VEE 5 and lower Execution Modes perform the following date-
type conversions for instrument I/O on an input transaction.

INT16 valuesfrom an instrument are individually converted to INT32
values by VEE 5 and lower Execution Modes. This conversion assumes that
the INT16 datawas signed data. If you need the resulting INT32 datain
unsigned form, pass the data through a formula object with the formula

BITAND (a, OxFFFF)

REAL32 valuesfrom an instrument are individually converted to REAL6 4
valuesby VEE 5 and lower.

VEE 6 Execution Mode retains the data type.

NumElements isasingle expression or acomma-separated list of
expressions that specifies the dimensions of each variablein varList. If
the first expression is an asterisk (*), the transaction will read data until an
EOF is encountered. Read to end is supported only for:

From File

From String

From StdIn

Execute Program

To/From Named Pipe

To/From Rocky Mountain Basic transactions.

Only the first dimension can have an asterisk rather than a number. If the
transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. ARRAY : 1 isaone-dimensiona array with one
element. VEE makes a distinction between scalars and one-dimensional
arrays containing only one element.

Appendix A 525

I/0 Transaction Reference
READ Transactions

For example, the following transaction, reading from afile:
READ BINARY a REAL64 ARRAY:*,10

will read until EOF is encountered, resulting in atwo dimensional array with
10 columns. The number of rows is dependent on the amount of datain the

file. The total number of data elements read must be evenly divisible by the
product of the known dimension sizes, in this example: 10.

READ BINARY transactions expect that incoming dataisin exactly the same
format that would be produced by an equivalent WRITE BINARY
transaction. BINARY encoded data has the advantage of being very compact,
but it is not easily shared with non-V EE applications.

BINBLOCK Encoding

READ BINBLOCK transactions are of thisform:

READ BINBLOCK VarList DataType ARRAY:NumEIlements
VarList isasingle variable or acomma-separated list of variables.
DataType isone of these pre-defined VEE data types:

BYTE - 8-bit unsigned byte

INT16 - 16-hit two's complement integer

INT32 - 32-bit two’'s complement integer
REAL32 - 32-bit IEEE 754 floating-point number
REAL64 - 64-bit IEEE 754 floating-point number
COMPLEX - equivalent to two REALS

PCOMPLEX -equivalent to two REALS

COORD - equivalent to two or more REALS

NumElements isasingle expression or acomma-separated list of
expressions that specifiesthe dimensions of each variablein varList. The
number of columnsis equal to the number of channels contained by the
binblock. The number of rows is equal to the number of readings per
channel. Only the first dimension can have an asterisk rather than a number.

If thefirst expression isan asterisk (*), the transaction will read data until an
EOF is encountered. Read to end is supported only for:

526 Appendix A

I/0 Transaction Reference
READ Transactions

From File

From String

From StdIn

Execute Program

To/From Named Pipe

To/From Socket

B To/From Rocky Mountain Basic transactions.

If the transaction is configured to read a one-dimension array, for asingle
channel, the single dimension represents rows and can have an asterisk.

For example, the following transaction, reading from afile:
READ BINBLOCK a REAL64 ARRAY:*,10

will read until EOF is encountered, resulting in atwo-dimensional array with
10 columns. Each column represents an instrument channel. The number of
rows is dependent on the amount of datain each channel. The total number
of data elements contained by the binblock must be evenly divisible by the
number of columns, in this example: 10.

You do not need to specify any additional information about the format of
incoming data as the block header contains sufficient information.

READ BINBLOCK can read any of the block formats described previously
with WRITE BINBLOCK transactions.

The following transaction reads two traces from an oscilloscope that formats
itstraces as | EEE 488.2 Definite Length Arbitrary Block Response Data:

READ BINBLOCK a,b REAL64

CONTAINER Encoding

READ CONTAINER transactions are of the form:
READ CONTAINER VarList
VarList isasingle variable or acomma-separated list of variables.

READ CONTAINER transactions reads data stored in the specia text
representation written by WRITE CONTAINER transactions. No additional
specifications, such as format, needs to be specified with READ CONTAINER
since that information is part of the container.

Appendix A 527

I/0 Transaction Reference
READ Transactions

REGISTER Encoding

READ REGISTER isused to read values from aVXI| instrument’s A16
memory.

READ REGISTER transactions are of thisform:

READ REG: SymbolicName ExpressionList INCR ARRAY:NumElements
—or-
READ REG: SymbolicName ExpressionList ARRAY:NumElements

where:

Symbol icName isaname defined during configuration of a VXl
instrument. The name refers to a specific address within ainstrument’s
register space. Specific datatypesfor READ REGISTER transactions are:

B BYTE - 8 bit unsigned byte

B WORD16 - 16-bit two's complement integer

B WORD32 - 32-bit two's complement integer

B REAL32 - 32-bit IEEE 754 floating point number

These datatypes are also specified during configuration of aV X1 instrument
and do not appear in the transaction.

ExpressionList isasingle expression or acomma-separated list of
expressions.

INCR specifies that array dataisto be read from the register incrementally
starting at the address specified by Symbol i cName. The first element of
the array isread from the starting address, the second from that address plus
an offset equal to the length in bytes of the datatype, etc. until all array
elements have been read. If INCR is not specified in the transaction, the
entire array is read from the single location specified by SymbolicName.

NumElements isasingle expression or acomma-separated list of
expressions that specifies the dimensions of each variablein varList. If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. ARRAY : 1 isaone-dimensional array with one
element. VEE makes a distinction between scalars and one-dimensional
arrays containing only one element.

528 Appendix A

I/0 Transaction Reference
READ Transactions

MEMORY Encoding

READ MEMORY isused to read values from a V XI instrument’s A24 or A32
memory.

READ MEMORY transactions are of thisform:

READ MEM: SymbolicName ExpressionList INCR ARRAY:NumElements
—or-
READ MEM: SymbolicName ExpressionList ARRAY:NumElements

where:

SymbolicName isaname defined during configuration of a VXl
instrument. The name refers to a specific address within ainstrument’s
extended memory. Specific datatypes for READ MEMORY transactions are:

BYTE - 8 bit unsigned byte

WORD16 - 16-bit two’s complement integer

WORD32 - 32-hit two’s complement integer

REAL32 - 32-bit IEEE 754 floating point number

WORD32*2 - two 32-bit two’'s complement integers in adjacent elements
of an Int32 array

REAL64 - 64-bit IEEE 754 floating point number.

These datatypes are also specified during configuration of aV X1 instrument
and do not appear in the transaction.

ExpressionList isasingle expression or acomma-separated list of
expressions.

INCR specifies that array dataisto be read from the memory location
incrementally starting at the location specified by Symbol i cName. The
first element of the array is read from the starting location, the second from
that location plus an offset equal to the length in bytes of the data type, etc.
until al array elements have been read. If INCR is not specified in the
transaction, the entire array is read from the single memory location
specified by SymbolicName.

NumElements isasingle expression or acomma-separated list of
expressions that specifies the dimensions of each variablein varList. If
the transaction is configured to read a scalar, the ARRAY keyword does not
appear in the transaction. ARRAY : 1 iSaone-dimensional array with one

Appendix A 529

I/0 Transaction Reference
READ Transactions

element. VEE makes a distinction between scalars and one-dimensional
arrays containing only one element.

IOSTATUS Encoding

READ IOSTATUS transactions are of thisform:

READ IOSTATUS STS Bits VarList
—or-
READ IOSTATUS DATA READY VarList

VarList isasingle Integer variable or acomma-separated list of Integer
variables.

READ IOSTATUS transactionsare used by Direct 1/0 for GPIO
interfaces, From StdiIn, To/From Named Pipe, To/From Socket,
and To/From Rocky Mountain Basic.

READ TOSTATUS transactions for GPIO reads the periphera status bits
available on the interface. The number of bits read is dependent on the
model number of theinterface. A single integer value isreturned that is the
weighted sum of al the status bits.

For example, the HP 98622A GPIO interface supports two peripheral status
lines, STI0 and STI1. Table A-17 illustrates how to interpret the value of x in
this transaction:

READ IOSTATUS STS Bits a

Table A-17. TOSTATUS Values

Value Read STI1 STIO
0 0 0
1 0 1
2 1 0
3 1 1

READ IOSTATUS transactions read the instantaneous values of the status
lines; the status line are not latched or buffered in any way.

530 Appendix A

I/0 Transaction Reference
READ Transactions

READ IOSTATUS transactionsreturn aBoolean YES (1) if thereis data
ready to read. If no datais present, a Boolean NO (0) isreturned. The READ

TOSTATUS transaction can be used to avoid a READ that will block program
execution until data is available.

Appendix A 531

I/0 Transaction Reference
Other Transactions

Other Transactions

This section describes other VEE 1/O transactions, including EXECUTE
transactions, WAIT transactions, SEND transactions, WRITE(POKE)
transactions, and READ(REQUEST) transactions.

EXECUTE Transactions

EXECUTE transactions send low-level commands to control the file,
instrument, or interface associated with a particular object. EXECUTE is used
to adjust file pointers, clear buffers and provide low-level control of
hardware interfaces. The various EXECUTE commands available are
summarized in Table A-18.

Table A-18. Summary of EXECUTE Commands

Commands Description

To File, From File

REWIND Sets the read pointer (From File) or write pointer (To File)
to the beginning of the file without changing the data in
the file.

CLEAR (To File only). Erases existing data in the file and sets

the write pointer to the beginning of the file.

CLOSE Explicitly closes the file. Useful when multiple processes
are reading and writing the same file.

DELETE Explicitly deletes the file. Useful for deleting temporary
files.

532 Appendix A

I/0 Transaction Reference
Other Transactions

Table A-18. Summary of EXECUTE Commands

Commands

Description

Interface Operat

ions

CLEAR For GP1IB, clears all instruments by sending DCL
(Device Clear). For VX1, resets the interface and runs
the resource manager

TRIGGER For cp1IB, triggers all instruments addressed to listen by
sending GET (Group Execute Trigger). For VX1I triggers
specified backplane trigger lines or external triggers on
an embedded controller.

LOCAL For GPIB, releases the REN (Remote Enable) line and
puts instrument into local mode.

REMOTE For GP1IB, asserts the REN (Remote Enable) line.

LOCAL For GPIB, sends the LLO (Local Lockout) message.

LOCKOUT Any instrument in remote at the time LLO is sent will lock
out front panel operation.

ABORT Clears the GP1B interface by asserting the IFC (Interface
Clear) line.

LOCK In a multiprocess system with shared resources, lets one

INTERFACE process lock the resources for its own use during a
critical section to prevent another process from trying to
use them.

UNLOCK In a multiprocess system where a process has locked

INTERFACE shared resources for its own use, unlocks the resources

to allow other processes access to them.

Appendix A

533

I/0 Transaction Reference

Other Transactio

ns

Table A-18. Summary of EXECUTE Commands

Commands

Description

Direct |/O to GPI

B

CLEAR Clears instrument at the address of a Direct I/0
object by sending the SDC (Selected Device Clear).

TRIGGER Triggers the instrument at the address of a Direct
I/0 object by addressing it to listen and sending GET
(Group Execute Trigger).

LOCAL Places the instrument at the address of the Direct
1/0 object in the local state.

REMOTE Places the instrument at the address of the Direct

I/0 object in the remote state.

Direct |I/O to GPI

O

RESET

Resets the GPIO interface associated with the Direct
I/0 object by pulsing the PRESET line (Peripheral
Reset).

Direct I/0O to message-based VXI

CLEAR

Clears the VXI instrument associated with the Direct
I/0 object by sending the word-serial command Clear
(Oxffff).

TRIGGER

Triggers the VXI instrument associated with the Direct
I/0 object by sending the word-serial command Trigger
(Oxedff).

LOCAL

Places the VXI instrument associated with the Direct
I/0 object into local state by sending the word-serial
command Clear Lock (Oxefff).

REMOTE

Places the VXI instrument associated with the Direct
I/0 object into local state by sending the word-serial
command Set Lock (Oxeeff). in the remote state.

534

Appendix A

I/0 Transaction Reference
Other Transactions

Table A-18. Summary of EXECUTE Commands

Commands

Description

Direct I/O to Serial Interfaces

RESET Resets the serial interface associated with the Direct
1/0 object.

BREAK Transmits a signal on the Data Out line of the serial
interface associated with the Direct I/0 objectas
follows:

A logical High for 400 milliseconds
A logical Low for 60 milliseconds
CLOSE Close the connection with the serial interface associated

with the Direct 1/0 Object. A connection is reestablished
at the next connection, if any.

Execute Program, To/From Named Pipe, To/From Rocky Mountain Basic

CLOSE READ
PIPE

Closes the read named pipe associated with the (To/
From) object or the stdin pipe associated with the
(Execute Program).

CLOSE WRITE
PIPE

Closes the write named pipe associated with the (To/
From) object or the stdout pipe associated with the
(Execute Program).

To/From Socket

CLOSE

Closes the connection between client and server
sockets. To re-establish the connection, the client and
server must repeat the binl12-accept and connect-to
protocols.

Appendix A

535

I/0 Transaction Reference
Other Transactions

Table A-18. Summary of EXECUTE Commands

Commands Description

Direct I/0O, Multilnstrument Direct 1/O, Interface Operations to GPIB,
VXI, Serial, and GPIO

LOCK In a multiprocess system with shared resources, lets one
process lock the resources for its own use during a
critical section to prevent another process from trying to
use them.

UNLOCK In a multiprocess system where a process has locked
shared resources for its own use, unlocks the resources
to allow other processes access to them.

536 Appendix A

I/0 Transaction Reference
Other Transactions

Details About GPIB The ExECUTE commands used by Direct 1/0 to GPIB instruments and
Interface Operations aresimilar but different.

B Direct I/O EXECUTE commands addressan instrument to receive the
command.

B Interface Operations EXECUTE commands may affect multiple
instruments already addressed to listen.

Table A-19 through Table A-24 indicate the exact bus actions conducted by
Direct I/0Oand Interface Operations EXECUTE transactions.

Table A-19. EXECUTE ABORT GPIB Actions

Direct I/O | Interface Operations
Not IFC (= 100 psec)
applicable.
REN
ATN

Table A-20. EXECUTE CLEAR GPIB Actions

Direct I/0 | Interface Operations
ATN ATN
MTA DCL
UNL
LAG
SDC

Appendix A 537

I/0 Transaction Reference
Other Transactions

Table A-21. EXECUTE TRIGGER GPIB Actions

Direct I/O | Interface Operations
ATN ATN
MTA GET
UNL
LAG
GET

Table A-22. EXECUTE LOCAL GPIB Actions

Direct I/0 | Interface Operations
ATN REN
MTA ATN
UNL
LAG
GTL

Table A-23. EXECUTE REMOTE GPIB Actions

Direct I/0 | Interface Operations
REN REN
ATN ATN
MTA
UNL
LAG

538 Appendix A

Details About VXI

I/0 Transaction Reference
Other Transactions

Table A-24. EXECUTE LOCAL LOCKOUT GPIB Actions

Direct I/0 | Interface Operations

Not ATN
applicable.

LLO

The EXECUTE commands used by Direct 1/0toVXI instrumentsand
Interface Operations aresimilar, but different. Referencesto message-
based V X1 instruments apply to register-based instruments that are
supported

by I-SCPI.

B Direct I/0EXECUTE commands addressamessage-based VXI
instrument to receive aword-serial command.

B Interface Operations EXECUTE commands affect the VXI interface
directly and may affect VXI instruments within the interfaces servant
area.

EXECUTE TRIGGER transactionsfor the Interface Operations object
are of the form:

EXECUTE TRIGGER TriggerType Expression TriggerMode
TriggerType specifies which trigger group will be used by the
EXECUTE TRIGGER transaction. The groups are:

B TTL - Specifiesthe eight TTL trigger lines on the V XI backplane.
B EcL - Specifiesthe four ECL trigger lines on the V XI backplane.
B EXT - Specifies the external triggers on a embedded V X1 controller.

Expression evaluatesto asingle Integer variable that represents a bit
pattern indicating which trigger lines for a particular TriggerType areto
be triggered. A value of 5, represented in binary as 101, indicatesthat TTL
lines 0 and 2 are to betriggered. A value of 255 triggersall eight TTL lines.
TriggerMode indicates the way the trigger lines are to be asserted:

Appendix A 539

I/0 Transaction Reference
Other Transactions

B PULSE - Linesareto be pulsed for adiscreet timelimit (TriggerType

dependent).

B ON - Assertsthe trigger lines and leaves them asserted.

B OFF - Removes the assertion from trigger lines that were asserted by a

previous ON transaction.

Table A-25 through Table A-28 indicate the bus actions conducted by
Direct I/0Oand Interface Operations EXECUTE transactions.

Table A-25. EXECUTE CLEAR VXI Actions

Direct I/O

Interface Operations

Word-serial command Clear(0xffff)

Pulse SYSRESET line, rerun
Resource Manager

Table A-26. EXECUTE TRIGGER VXI Actions

Direct I/O

Interface Operations

Word-serial command
Trigger(0xedff)

Triggers either the TTL or ECL
trigger lines in the backplane or the
external trigger(s) on the
embedded VXI controller. You can
specify which lines are to be
triggered for each trigger type.

Table A-27. EXECUTE LOCAL VXI Actions

Direct I/O

Interface Operations

Word-serial command Set
Lock(Oxeeff)

Not applicable.

540

Appendix A

I/0 Transaction Reference
Other Transactions

Table A-28. EXECUTE REMOTE VXI Actions

Direct I/0 Interface Operations

Word-serial command Clear Not applicable.
Lock(Oxefff)

WAIT Transactions

There are four types of WwAIT transactions.
B WAIT INTERVAL

B WAIT SPOLL (Direct I/O to GPIB and message-based VXI
instruments only)

B WAIT REGISTER (Direct I/0toVXI instrumentsonly)
B WAIT MEMORY (Direct I/0 toVXI instrumentsonly)

WAIT INTERVAL transactionswait for the specified number of seconds
before executing the next transaction listed in the open view of the object.
For example, this transaction waits for 10 seconds:

WAIT INTERVAL:10
WAIT SPOLL transactions are of the form:
WAIT SPOLL Expression Sense

Expression isan expression that evaluates to an integer. The integer
will be used as a bit mask.

Sense isafield with two possible values.

B ANY SET
B ALL CLEAR

Appendix A 541

I/0 Transaction Reference
Other Transactions

WAIT SPOLL transactionswait until the serial poll response byte of the
associated instrument meets a specific condition. The serial poll responseis
tested by bitwise ANDing it with the specified mask and ORing the resulting
bitsinto asingle test bit. The transaction following WAIT SPOLL executes
when one of the following conditions is met:

B Thetransaction specifies ANy (aNy SET) and thetest bit istrue (1).
B Thetransaction specifies CLEAR (ALL CLEAR) and the test bit isfalse (0).

The following transactions show one way to Use WAIT SPOLL:

WAIT SPOLL:256 ANY Wait until any bit is set.
WAIT SPOLL:256 CLEAR Wait until all are clear.
WAIT SPOLL:0x40 ANY Wait until bit 6 is set.

WAIT SPOLL:0x40 CLEAR Wait until bit 6 is clear.

WAIT REGISTER and WAIT MEMORY transactions are of the form:

WAIT REG:SymbolicName MASK:Expression Sense [Expression]
—or-
WAIT MEM:SymbolicName MASK:Expression Sense [Expression]

where:

SymbolicName isaname defined during configuration of aV XI|
instrument. The name refers to a specific address within ainstrument’s
A16 or extended memory.

MASK: Expression isan expression that evaluatesto an integer. The
integer will be used as abit mask. The size in bytes of this mask value
depends on the data type for which Symbo1 i cName has been configured.

Sense isafield with three possible values.

B ANY SET
B ALL CLEAR
B *EQUAL

[Expression] isan optiona compare value that evaluates to an integer.
Theinteger is used only when Sense iSEQUAL.

WAIT REGISTER Or MEMORY transactions wait until the value read from the
register or memory location specified by Symbol icNamesinthe
associated V X| instrument meets a certain condition.

542 Appendix A

I/0 Transaction Reference
Other Transactions

Thevaueread islogicaly ANDed with the bit mask specified in

MASK: Expression, resulting in atest value. The size of thetest value is
dependent on the data type configured for the specified register or memory
location. The transaction following WAIT SPOLL executes when one of the
following conditionsis met:

B Thetransaction specifiesaNy (aNy sSET) and the test value has at least
one bit true (1).

B Thetransaction specifies CLEAR (ALL CLEAR) and the test value has all
bits false (0).

B The transaction specifies EQUAL and the test value is equal bit-for-bit
with the compare value specified in [Expression).

Appendix A 543

I/0 Transaction Reference
Other Transactions

SEND Transactions

SEND transactions are of this form:
SEND BusCmd
BusCmd is one of the bus commands listed in Table A-29.

SEND transactions are used within Interface Operations objectsto
transmit low-level bus messages via a GPIB interface. These messages are
defined in detail in IEEE 488.1.

544 Appendix A

I/0 Transaction Reference
Other Transactions

Table A-29. SEND Bus Commands

Command

Description

COMMAND

Sets ATN true and transmits the specified data bytes. ATN
true indicates that the data represents a bus command.

DATA

Sets ATN false and transmits the specified data bytes.
ATN false indicates that the data represents instrument-
dependent information.

TALK

Addresses a instrument at the specified primary bus
address (0-31) to talk.

LISTEN

Addresses a instrument at the specified primary bus
address (0-31) to listen.

SECONDARY

Specifies a secondary bus address following a TALK or
LISTEN command. Secondary addresses are typically
used by cardcage instruments where the cardcage is at a
primary address and each plug-in module is at a
secondary address.

UNLISTEN

Forces all instruments to stop listening and sends UNL.

UNTALK

Forces all instruments to stop talking; sends UNT.

MY LISTEN ADDR

Addresses the computer running VEE to listen and sends
MLA.

MY TALK ADDR

Addresses the computer running VEE to talk and sends
MTA.

MESSAGE

Sends a multi-line bus message. Consult IEEE 488.1 for
details. The multi-line messages are:

DCL Device Clear

SDC Selected Device Clear
GET Group Execute Trigger
GTL Go To Local

LLO Local Lockout

SPE Serial Poll Enable
SPD Serial Poll Disable
TCT Take Control

Appendix A

545

Note

I/0 Transaction Reference
Other Transactions

WRITE(POKE) Transactions

WRITE (POKE) transactions are supported by VEE for Windows only.

The WRITE (POKE) transaction isvery similar to the WRITE transaction,
except that it applies only to the To/From DDE object. The main difference
of WRITE (POKE) isthat you must specify an item name. For example:

WRITE ITEM:"r2c3" TEXT a EOL

The following encodings are allowed:

B TEXT
B BYTE
B CASE
B CONTAINER

For more specific information about these formats see the WRITE
transaction.

READ(REQUEST) Transactions

The READ (REQUEST) transaction isvery similar to the READ transaction,
except that it applies only to the To/From DDE object. The main difference
of READ (REQUEST) isthat you must specify an item name. For example:

READ ITEM:"r2c3" TEXT a EOL
READ (REQUEST) transactions are supported by VEE for Windows only.
The following encodings are allowed:

B TEXT
B CONTAINER

For more specific information about these formats see the READ transaction.

546 Appendix A

Troubleshooting Techniques

Troubleshooting Techniques

This appendix describes instrument control troubleshooting andcommon
situations and possible recovery actions. Table B-1 addresses instrument
control troubleshooting.

Table B-1. Instrument Control Troubleshooting

Problem Remedy/Cause

Instruments do not The following conditions must be met:
respond at all.
* Instruments must be powered up and connected to the interface by a
functioning cable. The appropriate 1/O libraries must be installed.

* For To/From VXIplugé&play objects: You must have installed and
configured the appropriate VXIplug& play driver files for your
instrument. Also, the correct VXIplug& play address string must be
specified in the Advanced Instrument Properties dialog box for
each instrument. The address for each instrument must be unique.

e ForDirect I/0,Panel Driver, and Component Driver
objects: The interface logical unit and instrument addresses must
match settings in the Address field of the Instrument Properties
dialog box. The address for each instrument must be unique. Also, the
Live Mode field in the Advanced Instrument Properties dialog
box must be set to ON.

* You or your system administrator must properly configure VEE to
work with instruments. Normally this is done during VEE installation.
See the installation guide.

* For UNIX systems, the UNIX kernel must be configured with the
proper drivers and interface cards.

548 Appendix B

Troubleshooting Techniques

Table B-1. Instrument Control Troubleshooting

Problem Remedy/Cause
You cannot For GPIO and serial interfaces, the instrument address is the same as
determine the the interface logical unit. GPIB instrument addresses are set by
instrument address. hardware switches or front panel commands. See the instrument’s

programming manual for details. VXI devices have logical addresses
set by switches on the outside of the cards (usually the cards must be
removed from the card cage to access the switches). See Chapter 3,
“Configuring Instruments,” for further information about configuring

addresses.
You cannot The interface logical units must be configured with the T/0 Config
determine the utility supplied with the HP I/O libraries. See Installing the Agilent 1/0

interface logical unit. | Libraries (VEE for Windows) or Installing the Agilent I/O Libraries
(VEE for HP-UX) for further information. See Table 5-2,
“Recommended 1/O Logical Units,” on page 213 for recommended
logical unit settings.

Appendix B 549

Troubleshooting Techniques

Table B-2 addresses general V EE troubleshooting.

Table B-2. VEE Troubleshooting

Problem

Possible Cause

Suggested Solutions

When running a
program created in
versions prior to VEE
6.0 in VEE 6 Execution
Mode, the program does
not operate as expected

See “Using VEE Execution
Modes” on page 17 for possible
solutions.

Your UserObject does
not operate as expected.

You might be crossing the
context boundaries with
asynchronous data (such as
connecting to an XEQ pin on an
object inside the UserObject).

Possible Solution 1: Move any
asynchronous dependencies to
outside the UserObject.

Possible Solution 2: Enable
Show Execution Flow or
Show Data Flow to view the
order of operation in your
program.

You want to change the
functionality of an object.

Use the object menu which
includes features that let you
add a control input terminal and
edit properties.

You only get one value
output from an iterator
within a UserObject.

A UserObject only activates its
outputs once.

Take the iterator out of the
UserObject.

An iterator only operates
once.

Your iteration subthread is
connected to the sequence
output pin, not the data output
pin.

Start the iteration subthread
from the data output pin.

For Count does not
operate.

The value of For Count is 0 or
negative.

Change the value. If you need a
negative value, negate the
output or use For Range.

550

Appendix B

Troubleshooting Techniques

Table B-2. VEE Troubleshooting

Problem

Possible Cause

Suggested Solutions

For Range Or For Log
Range does not
operate.

The sign of the step size is
wrong. If From is less than
Thru, Step must be positive. If
Thru is less than From, Step
must be negative.

Change step.

You get the UNIX
message sh:name -
not found.

You mistyped the name of the
executable.

Retype veetest. You may need
to specify the full path to the
executable.

You get the UNIX
message Error:
cannot open
display

Your DISPLAY environment
variable is not set or is set to
display on a machine for which
permissions are not set up
correctly.

Set (and export) your
environment variable DISPLAY.
Generally, this is set to
hostname: 0. 0. To display on
a remote machine, set up
permissions with xhost on the
remote machine.

VEE appears to hang --
the pointer is an
hourglass.

Possible Cause 1:VEE is
rerouting lines because you
have Auto Line Routing set
on and you moved an object.

Possible Cause 2: VEE is
printing the screen or the
program.

Possible Cause 3: You just cut
a large object or a large number
of objects. VEE is saving the
objects to the Paste buffer.

Wait. If the pointer does not
change back to the crosshairs
within a few minutes, type
CTRL+C (or what your intr
setting is in the terminal window
from which you started VEE
6.0), close the VEE window, or
kill the VEE process.

You cannot Open a
program, Cut objects, or
delete a line (the feature
is grayed).

The program is still running.

Press Stop to stop the program,
then try the action again.

You cannot Paste (the
feature is grayed).

The pPaste buffer is empty.

Cut, Copy, of Clone the
object(s) again.

Appendix B

551

Troubleshooting Techniques

Table B-2. VEE Troubleshooting

Problem

Possible Cause

Suggested Solutions

You cannot Cut,
Create UserObject,
or Add to Panel (the
feature is grayed).

No objects are selected.

Select the objects and try the
action again.

A UserObject only
outputs the last data
element generated.

UserObjects do not
accumulate data in the output
terminal buffer. The buffer only
holds the last data element
received.

Use a Collector to gather all
of the data generated into an
array. Send this data to the
output terminal.

You cannot get out of
line drawing mode.

Double-click or press Esc to end
line drawing mode.

YougetaParse Error
object when you Open a
program.

Replace the Parse Error
object with a new object.

Your characters are not
appearing correctly.

You have a non-USASCII
keyboard.

See “Configuring VEE” on
page 5 for recovery information.

Your colors outside of
VEE are changing
(although when you are
in VEE , the VEE colors
look normal).

Your color map planes are all
used.

See “Configuring VEE” on
page 5 for recovery information.

552

Appendix B

Instrument |/O Data Type Conversions

Instrument |/O Data Type Conversions

For instrument 1/O transactions involving numeric data, VEE performs an
automatic data-type conversion according to the rules listed below. (These
data-type conversions are completely automatic. Normally, you will not
need to be concerned with them.) These conversions only occur when
running in VEE 5 and prior Execution Modes.

B Onaninput transaction (read), Int16 or Byte vauesfrom aninstrument
are converted to 1nt 32 values, preserving the sign extension. Also,
Real32 valuesfrom an instrument are converted to 64-bit Real
numbers.

B On an output transaction (write), Int32 or Real values are converted
to the appropriate output format for the instrument:

O If an instrument supports the Rea132 format, VEE converts 64-bit
Real valuesto Real32 values, which are output to the instrument.
If the real valueisoutside of the range for Real32 values, an error
will oceur.

Q If aninstrument supports the 1nt 16 format, VEE truncates Iint 32
valuesto Tnt16 values, which are output to the instrument. Real
values arefirst converted to I1nt 32 values, which are then truncated
and output. However, if areal value is outside the range for an
Int32, an error will occur.

Q If aninstrument supports the Byte format, VEE truncates 1nt32
valuesto Byte values, which are output to the instrument. Real
values arefirst converted to 1nt 32 values, which are then truncated
and output. However, if areal value is outside the range for an
Int32, an error will occur.

554 Appendix C

Keysto Faster Programming

Note

KeysTo Faster Programs

This appendix gives guidelines to help improve VEE program performance.
For general tips to increase the performance of your program, see
Improving the Performance of a VEE Program under

How Do I inVEE Online Help.

If you developed programs on a version of VEE prior to VEE 6.0, see
“Using VEE Execution Modes’ on page 17 for information on converting
your program to use the compiler.

The following constructs will help you get the most speed benefit from the
compiler (when the Execution Mode iSSE{tOVEE 4, VEE 5 Of
VEE 6 iNFile = Default Preferences):

B UsethepProfiler

You can usethe profiler (located at view = Profiler) to categorize
which routines are taking more time than you want them to. To run the
Profiler:

1. Click start Profiling and then runyour program.

2. When you have finished running your program, click Refresh to see
the results.

3. Click stop Profiling to stop the profiler. Click clear to clear the
current results displayed.

B Look at linecolors

Lines are colored when V EE can determine the data type before execution.
The more colored (non-black) lines, the faster the program will run.

556 Appendix D

Keys to Faster Programming

B Add Terminal Constraints

Because UserFunctions can be called from multiple places, VEE cannot
determine the input data types before the program runs. To speed up
UserFunctions, whenever possible add terminal constraints on their data
input terminals.

B UseDeclared Variables

If you use global variables, use Declare Variable (located onthepata
menu) when possible to declare the type and shape of your variables so VEE
can infer typesfor them prior to execution. This technique also allowsyou to
set the scope of your variables.

B Eliminatethe autoscale control input

A common programming practice is executing the Autoscale control input
on graphical displays more often than necessary. If you can wait to execute
Autoscale until after the display has finished updating, instead of after
each point is plotted, your program will execute faster. You can eliminate the
Autoscale control input by using the Automatic Scaling property (see
the scales tab) which can further improve execution speed.

B Send a complete set of data

On graphical displays, whenthe Automatic Scaling property isturned
on (seethe scales tab), the program executes faster if a complete set of
datais sent to the display. Then the display automatically rescales once. If a
program sends one data point at atime to the display, the display may
automatically rescale after each data point which will slow down program
execution. In this case, use a Collector object to create an array and then
send the array to the display.

B Executethedisplay only once

If adisplay is showing the final output of aloop, but not tracking data
generated for each iteration of the loop (for example, an AlphaNumeric
object not aL.ogging AlphaNumeric), do not have it execute every time
in the loop. Connect the iterator’s sequence output pin to the display’s
sequence input pin so the display only executes the last time.

Appendix D 557

Keys to Faster Programming

B Turn debugging featur es off

Once you know the program is running correctly, run the program with
debugging features off. Use File = Default Preferences and select
Disable Debug Features inthe Debug group.

You can aso usethe -r option, or run VEE RunTime. Because no

debug instructions are generated in those modes, your program will run a
little faster. However, you will not be able to perform any debugging actions
such as, pausing, stepping, Breakpoints, Line Probe, Show Data
Flow and Show Execution Flow.

558 Appendix D

ASCII| Table

ASCII Table

This appendix contains reference tables of ASCII 7-bit codes.

Table E-1. ASCII 7-bit Codes

Binary Oct | Hex | Dec GPIB Msg
NUL 0000000 | 000 00 0
SOH 0000001 | 001 01 1 GTL
STX 0000010 | 002 02 2
ETX 0000011 | 003 03 3
EOT 0000100 | 004 04 4 SDC
ENQ 0000101 | 005 05 5 PPC
ACK 0000110 | 006 06 6
BEL 0000111 | 007 | 07 7
BS 0001000 | 010 08 8 GET
HT 0001001 | 011 | 09 9 TCT
LF 0001010 | 012 0A 10
VT 0001011 | 013 0B 11
FF 0001100 | 014 ocC 12
CR 0001101 | 015 0D 13
SO 0001110 | 016 0E 14
ST 0001111 | 017 | OF 15
DLE 0010000 | 020 10 16
DC1 0010001 | 021 | 11 17 LLO
DC2 0010010 | 022 | 12 18
560 Appendix E

Table E-1. ASCII 7-bit Codes

ASCII Table

Binary Oct | Hex | Dec GPIB Msg
DC3 0010011 | 023 13 19
DC4 0010100 | 024 14 20 DCL
NAK 0010101 | 025 15 21 PPU
SYN 0010110 | 026 16 22
ETB 0010111 | 027 17 23
CAN 0011000 | 030 18 24 SPE
EM 0011001 | 031 19 25 SPD
SUB 0011010 | 032 1A 26
ESC 0011011 | 033 1B 27
FS 0011100 | 034 1c 28
GSs 0011101 | 035 1D 29
RS 0011110 | 036 1E 30
uUs 0011111 | 037 1F 31
space | 0100000 | 040 20 32 listen addr O
! 0100001 | 041 21 33 listen addr 1
" 0100010 | 042 22 34 listen addr 2
0100011 | 043 23 35 listen addr 3
$ 0100100 | 044 24 36 listen addr 4
% 0100101 | 045 25 37 listen addr 5
& 0100110 | 046 26 38 listen addr 6
! 0100111 | 047 27 39 listen addr 7
(0101000 | 050 28 40 listen addr 8
) 0101001 | 051 29 41 listen addr 9

Appendix E

561

ASCII Table

Table E-1. ASCII 7-bit Codes

Binary Oct | Hex | Dec GPIB Msg
0101010 | 052 | 2A 42 listen addr 10
0101011 | 053 2B 43 listen addr 11
0101100 | 054 | 2C 44 listen addr 12
0101101 | 055 2D 45 listen addr 13
0101110 | 056 2E 46 listen addr 14
0101111 | 057 | 2F 47 listen addr 15
0110000 | 060 | 30 48 listen addr 16
0110001 | 061 | 31 49 listen addr 17
0110010 | 062 | 32 50 listen addr 18
0110011 | 063 | 33 51 listen addr 19
0110100 | 064 34 52 listen addr 20
0110101 | 065 | 35 53 listen addr 21
0110110 | 066 36 54 listen addr 22
0110111 | 067 37 55 listen addr 23
0111000 | 070 | 38 56 listen addr 24
0111001 | 071 39 57 listen addr 25
0111010 | 072 3A 58 listen addr 26
0111011 | 073 | 3B 59 listen addr 27
0111100 | 074 3C 60 listen addr 28
0111101 | 075 3D 61 listen addr 29
0111110 | 076 | 3E 62 listen addr 30
0111111 | 077 | 3F 63 UNL
1000000 | 100 | 40 64 talk addr 0

562

Appendix E

Table E-1. ASCII 7-bit Codes

ASCII Table

Binary Oct | Hex | Dec GPIB Msg
A 1000001 | 101 | 41 65 talk addr 1
B 1000010 | 102 | 42 66 talk addr 2
C 1000011 | 103 | 43 67 talk addr 3
D 1000100 | 104 | 44 68 talk addr 4
E 1000101 | 105 | 45 69 talk addr 5
F 1000110 | 106 | 46 70 talk addr 6
G 1000111 | 107 | 47 71 talk addr 7
H 1001000 | 110 48 72 talk addr 8
I 1001001 | 111 | 49 73 talk addr 9
J 1001010 | 112 47 74 talk addr 10
K 1001011 | 113 4B 75 talk addr 11
L 1001100 | 114 | 4C 76 talk addr 12
M 1001101 | 115 4D 77 talk addr 13
N 1001110 | 116 | 4E 78 talk addr 14
0 1001111 | 117 | 4F 79 talk addr 15
P 1010000 | 120 | 50 80 talk addr 16
Q 1010001 | 121 | 51 81 talk addr 17
R 1010010 | 122 | 52 82 talk addr 18
S 1010011 | 123 | 53 83 talk addr 19
T 1010100 | 124 54 84 talk addr 20
U 1010101 | 125 | 55 85 talk addr 21
Y 1010110 | 126 56 86 talk addr 22
W 1010111 | 127 57 87 talk addr 23

Appendix E

563

ASCII Table

Table E-1. ASCII 7-bit Codes

Binary Oct | Hex | Dec GPIB Msg
X 1011000 | 130 | 58 88 talk addr 24
Y 1011001 | 131 59 89 talk addr 25
Z 1011010 | 132 | 5A 90 talk addr 26
[1011011 | 133 | 5B 91 talk addr 27
\ 1011100 | 134 5C 92 talk addr 28
] 1011101 | 135 | 5D 93 talk addr 29
» 1011110 | 136 5E 94 talk addr 30
_ 1011111 | 137 | 5F 95 UNT
' 1100000 | 140 60 96 secondary addr 0
a 1100001 | 141 | 61 97 secondary addr 1
b 1100010 | 142 62 98 secondary addr 2
c 1100011 | 143 63 99 secondary addr 3
d 1100100 | 144 64 100 secondary addr 4
e 1100101 | 145 65 101 secondary addr 5
f 1100110 | 146 66 102 secondary addr 6
1100111 | 147 67 103 secondary addr 7
1101000 | 150 68 104 secondary addr 8
i 1101001 | 151 69 105 secondary addr 9
j 1101010 | 152 6A 106 secondary addr 10
k 1101011 | 153 6B 107 secondary addr 11
1 1101100 | 154 6C 108 secondary addr 12
m 1101101 | 155 6D 109 secondary addr 13
n 1101110 | 156 6E 110 secondary addr 14

564 Appendix E

ASCII Table

Table E-1. ASCII 7-bit Codes

Binary Oct | Hex | Dec GPIB Msg
o 1101111 | 157 6F 111 secondary addr 15
p 1110000 | 160 70 112 secondary addr 16
q 1110001 | 161 71 113 secondary addr 17
T 1110010 | 162 72 114 secondary addr 18
s 1110011 | 163 73 115 secondary addr 19
t 1110100 | 164 74 116 secondary addr 20
u 1110101 | 165 75 117 secondary addr 21
v 1110110 | 166 76 118 secondary addr 22
w 1110111 | 167 77 119 secondary addr 23
e 1111000 | 170 78 120 secondary addr 24
y 1111001 | 171 | 79 121 secondary addr 25
z 1111010 | 172 7A 122 secondary addr 26
{ 1111011 | 173 | 7B 123 secondary addr 27
| 1111100 | 174 | 7C | 124 secondary addr 28
} 1111101 | 175 7D 125 secondary addr 29
~ 1111110 | 176 7E 126 secondary addr 30
[del] | 1111111 | 177 | 7F 127

Appendix E

565

ASCII Table

566 Appendix E

VEE for UNIX and VEE for Windows
Differences

VEE for UNIX and VEE for Windows
Differences

In general, programs written in VEE on one platform will work on any other
supported platform. The only difficulties that may arise are when you use
programs that access features specific to the underlying platform, such as
DLLson PCsor named pipes on UNIX. This appendix containsinformation
on the differences between VEE on UNIX and PC platforms.

Execute Program. Thereisan Execute Program object for both the
UNIX and PC platforms. You can determine on which platform you are
executing by using the whichPlatform(), whichos (), or
whichPlatform () built-in functions(in the Function & Object
Browser). YOU can then programmatically determine which Execute
Program Object to use.

DLL versus Shared Library. Differences when creating DLLs and Shared
Libraries for Compiled Functions are:

B From a Shared Library you do 1/0O through SICL, VISA, or TERMIO.
For DLLsuse SICL or VISA. To avoid systemic resource conflicts, be
sure your source code uses library commands that support the platform
and interface system the compiled function will run on.

B Shared Libraries use X 11 graphics while DLLs use Microsoft Windows
GDiI cdlls. Link Shared Libraries against the X Windows Release 6 of the
library. While a compiled function runsin an X Window, V EE cannot
service its human interface.

Data Files. No binary fileswill work across platforms since byte ordering is
reversed between UNIX and PC platforms. However, ASCII datafiles
written using To File objectsarereadable by From File objectson other
platforms. Also, VEE program files are compatible since they are stored in
ASCII. When moving ASCI| datafiles from one platform to another, UNIX
files use the linefeed character to terminate lines while M S Windows uses
the carriage return/linefeed sequence to terminate lines.

568 Appendix F

About Callable VEE

Note

About Callable VEE

In some cases you may want to build an application in another language and
still use VEE UserFunctions. Just as Remote Functions allow one VEE to
access UserFunctions of another VEE, Callable VEE alows you to call
UserFunctions from a C program or any language that can access C routines.

Previous versions of VEE provided two ways to execute V EE code from
other development environments. the VEE RPC API and the Callable VEE
ActiveX Control. VEE 6 replaces the Callable VEE ActiveX Control with
the Callable VEE Automation Server that allows you to easily access VEE
code from programming environments like Visua Basic.

For information about the Callable VEE Automation Server, click Help =
Contents and Index. Then open What’s New in Agilent VEE 6.0 and double-
click on Agilent VEE 6.0 New Features. Scroll down to the topic, Callable
VEE ActiveX Automation Server.

This appendix provides information about the VEE RPC API.

V EE must be accessible on the server system to run the UserFunctions. They
cannot be executed on their own. UserFunctions have to be organized into a
library that VEE can load and execute.

570 Appendix G

About Callable VEE
Using the VEE RPC API

Using the VEE RPC API
The tools needed to support the VEE RPC API are provided with VEE:

B A Clibrary, named 1ibvapi.lib (1ibvapi.a on HP-UX) isfoundin
the 1ib subdirectory of the VEE installation. Thislibrary isto be linked
to your C program.

Thislibrary supports two Application Program Interfaces (APIs). One
API (VEE RPC) sets up and controls the Remote Procedure Call (RPC)
between the C program and VEE. The prototypesfor the functionsin this
API arein veerpC. h and perform the following actions:

U Loading and unloading VEE servers.

U Loading and unloading VEE libraries.

U Listing UserFunctionsin VEE libraries.

U Calling and receiving data from UserFunctions.
U Performing related status and housekeeping.

The second API (VEE DATA) performs conversions between C and VEE
datatypes. The prototypes for the functionsin this APl arein
veeData.h.

Note The 1ibvapi.1lib library cannot link to programs when using the Borland
compiler.

B The VEE Service Manager, veesm. exe (veesm on HP-UX) islocated
with the other VEE executablesin the VEE installation directory. It
handles running the target VEE with its UserFunctions and allows a
remote client to bring up VEE as a server.

On HP-UX systems, veesm isautomatically run by the inet daemon
process. On aPC, either run veesm. exe or put it into the Windows
Startup Group so it is started when the PC is started.

Appendix G 571

Starting and
Stopping a Server

About Callable VEE
Using the VEE RPC API

There are example programsin the callableVEE\RPC API directory that
demonstrate using the VEE RPC API. They are named callVEE. c and
callVEE.vee.

About the VEE RPC API

The VEE RPC API handles setting up, maintaining, and closing the
connection between the C client program and the V EE server.

The VEE RPC API’sroutines use one of three handles in their operation:

VRPC SERVICE; // Handle to a VEE server.
VRPC_LIBRARY; // Handle to a VEE UserFunction library.
VRPC_FUNCTION; // Handle to a VEE UserFunction.

The API calls are organized as described in the following subsections.

The most essential API functions are the two that start and stop a VEE
server. Toload a VEE server use:

VRPC_SERVICE vrpcCreateService(char *hostName,
char *display,
char *geometry,

double aTimeoutInSeconds,

unsigned long flags) ;

Thisfunction starts a VEE server on the host given by hostName. The
hostName can bein text form (for example, mycomputer@lvld.hp.com)
or numeric form (15.11.55.105). Thefunction returns a server handle.
You get aNULL (effectively azero) back if something goes wrong. Thus,
you can then get the precise error information with the
veeGetErrorNumber () and veeGetErrorString () functions, as
outlined in the next section.

The display argument specifies aremote display using a network address
in text (babylon:0.0) or numericform(15.11.55.101:0.0)0ona
networked X Windows system.

The geometry argument specifies VEE window size and placement. For
example 800x500+0+0 puts an 800x500 VEE window in the lower-left
corner of the display.

572 Appendix G

Loading and
Unloading a Library

About Callable VEE
Using the VEE RPC API

The aTimeout InSeconds argument gives the number of secondsto wait
when starting the service. Thisvalueis used for all later callsin the session
unless changed by vrpcSetTimeout ().

The f1ags argument is not normally used. However, you can set it to the
value VEERPC_CREATE_NEW to start anew copy of VEE on a server instead
of using the one already started.

To stop aVEE server use:
VRPC_SERVICE vrpcDeleteService(VRPC SERVICE aService
)

The only argument is the server handle obtained when you originally started
the server. You get aNULL pointer back if al is OK, otherwise you get a
non-NULL pointer.

Once you have started the server, you then need to load a library into the
remote copy of VEE. Thisis done with:

VRPC LIBRARY vrpcLoadLibrary(VRPC SERVICE aService,
char *LibraryPath);

This function accepts as arguments a server handle and the pathname of a
library of UserFunctions specified by LibraryPath anditreturnsalibrary
handle. If it fails, you get aNULL back.

Once loaded, you can specify either normal or debugging execution mode
for the library with:;

void vrpcSetExecutionMode (VRPC _LIBRARY aLibrary,
unsigned long executionMode) ;

In this function, you specify the handle for the library and an
executionMode flag, which can be set to VRPC DEBUG EXECUTION
(which specifies single-stepping through the UserFunction on the target
system) and then set back to the default VRPC NORMAL EXECUTION.

You can similarly unload the library with:

VRPC_LIBRARY vrpcUnLoadLibrary(VRPC LIBRARY alLibrary
)i

The only argument is the library handle.

Appendix G 573

Selecting
UserFunctions

About Callable VEE
Using the VEE RPC API

Now that you are connected to the server and have alibrary loaded, you need
to get a handle to a UserFunction.

You get a function handle with:

VRPC_FUNCTION vrpcFindFunction(VRPC_LIBRARY alibrary,
char *aFunctionName) ;

You specify the library handle and a string giving the UserFunction name as
arguments and get back the function handle or aNULL if something goes
wrong.

To get information on the function, use:

struct VRPC FUNC INFO*
vrpcFunctionInfo(VRPC_FUNCTION aFunction) ;

This returns adata structure or aNULL if something goes wrong. The data
structureis of the form:

typedef struct VRPC_FUNC_INFO

{

char *functionName; // Name of function.

long numArguments; // # of input pins on function.
enum veeType *argumentTypes; // List of argument types.
veeShape *argumentShapes; // List of argument shapes.

long numResults; // # of output pins on function.
enum veeType *resultTypes; // List of output types.
veeShape *resultShapes; // List of output shapes.

}i
If you get aNULL, the memory for thisistaken up in your process space, so
if you want to get rid of it you use:

struct VRPC FUNC INFO*
vrpcFreeFunctionInfo (struct VRPC FUNC INFO *funcinfo) ;

You can determine what functions arein the library with:

char** vrpcGetFunctionNames (VRPC_LIBRARY alLibrary,
long *numberOfFunctions) ;

This accepts alibrary handle as an argument. It returns a pointer to an array
of null-terminated strings giving the function names directly and the
numberOf Functions inthelibrary asaargument. You get aNULL pointer
back if an error occurs. The string array existsin your process space.

574 Appendix G

Calling
UserFunctions

Other Functions

About Callable VEE
Using the VEE RPC API

Now you can call the UserFunction.
You call and receive in asingle function using:

VDC* vrpcCallAndReceive(VRPC_FUNCTION aFunction,
VDC *arguments) ;

This function blocks, waiting for the function to complete or until a timeout
occurs. You specify afunction handle and an input array of VEE Data
Containers (VDCs). Handling VDCsis the function of the VEE DATA API
and is covered in “ About the VEE DATA API” on page 578.

Or, to call aUserFunction in blocking mode, you can invoke:

long vrpcCall(VRPC FUNCTION aFunction,
VDC *arguments) ;

Thisfunction does not "block". It returnsimmediately, whether it worked or
not. It returns O if all is OK and an error code if not.

Since most UserFunctions will return sometime, you will want to get avalue
back and for that you use:

VDC* vrpcReceive(VRPC FUNCTION aFunction,
unsigned long waitMode) ;

You specify afunction handle and awaitMode flag, which can have one of
three values:

B VRPC NO WAITING Thecall returnsimmediately with or without
results.

B VRPC WAIT SLEEPING Wait for data until timeout (server sleeps).
B VRPC WAIT SPINNING Wait for datauntil timeout (server busy).

If the function fails, aNULL is returned.

This section lists other utility functionsin the VEE RPC API:

B Thisfunction allows you to change the timeout. You specify a server
handle and the timeout in seconds. You get back azeroif all isOK and an
error codeif not.

Appendix G 575

About Callable VEE
Using the VEE RPC API

long vrpcSetTimeout (VRPC SERVICE aService,
double aTimeoutInSeconds) ;

B Thisfunction allows you to set the default C client behavior for receiving
data:

long vrpcSetBehavior (VRPC SERVICE aService,
unsigned long flags);

You specify a server handle and the flag and get back 0 or an error code.
Theflags are as follows:

VRPC_WAIT SLEEPING Wait for data until timeout (client sleeps).
VRPC_WAIT SPINNING Wait for data until timeout (client busy).

You can aso OR in aflag, VRPC_BUFFER EXPAND, to specify that the C
client will allocate and retain larger buffers in response to increasing
sizes of datareturned from the server.

B You can query the revision number of the remote veesm with:

long vrpcGetServerVersion(VRPC SERVICE aService) ;

You give thisaserver handle and get back either arevision code or a0 (if
you have an error).

576 Appendix G

About Callable VEE
Using the VEE RPC API

Error Codes for the Thefollowing error codes are returned when a connection to the VEE server

VEE RPC API cannot be made;

Error Code

850: eUnknownHost

851: eNoServiceManager

861: eServiceManagerTO
863: eServiceNotFound

864 :
eServiceNotStarted

866: eConnectRefused

868: eFailedSecurity

Meaning

The host name or IP address is
unresolvable.

veesm cannot be found on the server
host.

The service manager timed-out.
Unable to find the VEE service.

Unable to start the VEE service.

The connection to veesm or inetd was
refused.

Failed the security check on UNIX.

Thefollowing are fatal errors that occur after connection to aVEE server
(the connection has been terminated):

Error Code
852: eHostDown
853: eConnectTimedOut

855: eConnectBroken

Meaning
The VEE server host is down.
The connection has timed out.

The connection has broken.

Appendix G

577

About Callable VEE
Using the VEE RPC API

Thefollowing errorsreflect an internal non-fatal state within the service:

Error Code Meaning

865: eSomelInternalError A non-fatal internal error occurred.

869: eVeeServiceError There is an error within the
UserFunction.
870: eWouldBlock Returned for non-blocking RPC.

871: eDebugTermination The user pressed stop during a debug
session.

Thefollowing error is returned by a RPC function call:

Error Code Meaning

851: elInvalidArgument There is an invalid argument.

About the VEE DATA API

As shown in the previous section, performing a Call or Receive with a
UserFunction requires handling data in the VEE Data Container (VDC)
format, which is a set of data structures required by VEE for itsinterna
operation. Communicating with VEE from your C program requires an
ability to translate between VDCs and conventiona C datatypes. The VEE
DATA API providesthis ability (and afew others).

578 Appendix G

Data Types, Shapes The fundamental VDC types are listed in the veeData . h header file as:

and Mappings

About Callable VEE
Using the VEE RPC API

enum veeType

{

VEE_TYPE_ANY=0,
VEE_NOT |

DEFINED1l, // Leave space.

// The default without constraints.

VEE_LONG, // 32-bit signed integer (no 16-bit INTs in VEE) .
VEE_NOT DEFINED2, // Leave space.

VEE DOUBLE,
VEE COMPLEX,

// IEEE 754 64-bit floating-point number.
// Complex number: 2 doubles in rectangular form.

VEE_PCOMPLEX, // Complex number: 2 doubles in polar form.
VEE_STRING, // 8-bit ASCII null-terminated string.

VEE NIL, // Empty container returned by function call.
VEE _NOT DEFINED3, // Leave space.

VEE_COORD, // 2 or more doubles give XY or XYZ or data.
VEE_ENUM, // An ordered list of strings.

VEE_RECORD, // VEE record-structures data.

VEE _NOT DEFINED4, // Leave space.

VEE_WAVEFORM, // A 1D array of VEE DOUBLE with a time mapping.

VEE SPECTRUM

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

// A 1D array of VEE PCOMPLEX with a time mapping.

For convenience, the veeData . h file defines C data types for translation

with VEE data types:

short intile6;

long int32;

struct {double rval, ival;} veeComplex;
struct {double mag, phase;} veePComplex;
struct {double xval, yval;} vee2DCoord;
struct {double xval, yval, zval;} vee3DCoord;
void veeDataContainer;

veeDataContainer* VDC;

The datatypes can also have a specified number of dimensions, or numbDims,

given by:

Appendix G

579

About Callable VEE
Using the VEE RPC API

enum veeShape

{

VEE_SHAPE SCALAR, // A single data element.

VEE SHAPE ARRAY1D, // A one-dimensional array.

VEE SHAPE ARRAY2D, // A two-dimensional array.

VEE_SHAPE ARRAY3D, // A three-dimensional array.

VEE_SHAPE ARRAY, // An array with from 4 to 10 dimensions.

VEE_SHAPE ANY // Placeholder for undefined shape.

Arrays can be "mapped". Normally they are not, but the VEE WAVEFORM and
VEE_SPECTRUM data types are mapped types where the array elements
correspond to time intervals. Mappings are given by:

enum veeMapType

{

VEE_MAPPING NONE, // No mapping.
VEE MAPPING LINEAR, // Linear mapping.
VEE_MAPPING LOG // Log mapping.

}i
Generally, you do not need specify mappings.

Scalar Data To create VDC scalars from C data, use the following functions:

Handlin
g VDC vdcCreateLongScalar(int32 alLong) ;

VDC vdcCreateDoubleScalar(double aReal);
VDC vdcCreateStringScalar (char *aString) ;

VDC vdcCreateComplexScalar(double realPart,
double imaginaryPart) ;

VDC vdcCreatePComplexScalar (double magnitude,
double phase) ;

VDC vdcCreate2DCoordScalar (double xval,
double yval);

VDC vdcCreate3DCoordScalar(double xval,
double yval,
double zval);

580 Appendix G

About Callable VEE
Using the VEE RPC API

VDC vdcCreateCoordScalar(intlé aFieldCount,

double *values) ;

All these functions return apointer to aVDC, or aNULL if they fail.
Thereare no scalars of VEE WAVEFORM or VEE _SPECTRUM types as
they are always 1D arrays by definition.

You can change the values in the VDCs with another set of routines:

int32

int32

int32

int32

int32

int32

int32

int32

vdcSetLongScalar (VDC avD,
int32 alLong) ;

vdcSetDoubleScalar(VDC avD,
double aReal) ;

vdcSetStringScalar (VDC avD,
char *aStr);

vdcSetComplexScalar (VDC aVvD,
double realPart,
double imaginaryPart) ;

vdcSetPComplexScalar (VDC avD,
double magnitude,
double phase) ;

vdcSet2DCoordScalar (VDC avD,
double xval,
double yval) ;

vdcSet3DCoordScalar (VDC avD,
double xval,
double yval,
double zval);

vdcSetCoordScalar (VDC aVD,
intlé aFieldCount,
double* values) ;

As described above, these functions return either O or an error code.

Appendix G 581

About Callable VEE
Using the VEE RPC API

When you have created a scalar VDC or returned one from afunction, you
can get the C data type out of it with another set of routines:

int32 vdcGetLongScalarValue(VDC aVD,
int32 *alLong) ;

int32 vdcGetDoubleScalarValue(VDC aVD,
double *aReal) ;

char* vdcGetStringScalarValue(VDC aVvD) ;

int32 vdcGetComplexScalarValue(VDC aVD,
veeComplex *aComplex) ;

int32 vdcGetPComplexScalarValue(VDC aVvD,
veePComplex *aPComplex) ;

int32 vdcGet2DCoordScalarValue(VDC aVvD,
vee2DCoord *aCoord) ;

int32 vdcGet3DCoordScalarValue(VDC aVD,
vee3DCoord *aCoord) ;

double* vdcGetCoordScalarValue (VDC aVD,
intl6 *aFieldCount) ;

In general, these functions take the data out of the first argument, a VVDC,
and put it into the second, which isa C variable (with some types as defined
at the beginning of this section). They return O if no error and an error code if
thereis an error.

The exceptions are the vdcGet StringScalarvalue () function, which
returns a string directly from the function (or aNULL string if something
goeswrong) and the vdcGetCoordScalarvalue () function, which
returns a pointer to an array of N-dimensional coordinate data (with N
returned as an argument).

Finally, you can interrogate coordinate types for their number of coordinate
dimensions or set the coordinate dimensions to new valuesif desired:

intl6 vdcNumCoordDims (VDC aVD) ;
int32 vdcCoordSetNumCoordDims (VDC, intlé) ;

582 Appendix G

About Callable VEE
Using the VEE RPC API

Array Data Handling These functions create array VDC of VEE types. The values you supply are
copied into the VDC. The caller’s memory is never used. If an error occurs a
null pointer isreturned. You create VDC arrays with the following set of
functions:

B Thisfunction returnsaVDC of type VEE_LoNG which is allocated to a
size equal to the argument, numpPts. The array of data pointed to by the
argument, values, must be of the same specified size. The type of the
argument, int32, istype defined to type long in veeData . h.

VDC vdcCreateLonglDArray(int32 numPts,
int32 *values);

B ThisfunctionreturnsaVDC of type VEE_STRING Whichisallocated to a
size equal to the argument, numPts. The argument, strings, points to an
array of pointers which in turn point to null terminated strings. The
number of stringsin the array must equal the specified size. The type of
the argument, int32, istype defined to type 1ong in veeData. h.

VDC vdcCreateStringlDArray(int32 numPts,
char **gstrings);

B Thisfunction returnsaVDC of type VEE_DOUBLE which isalocated to a
size equal to the argument, numPt s. The argument, values, pointsto an
array of data. The number of doublesin the array must equal the
specified size. The type of the argument, int 32, istype defined to type
long inveeData.h.

VDC vdcCreateDoublelDArray(int32 numPts,
double *values);

B Thisfunction returnsaVDC of typeveE coMpPLEX Whichis preallocated
to asize equal to the argument, numpPts. The type of the argument,
int32, istype defined to type 1ong in veeData . h. The argument,
values, pointsto an array of structures of type veeComplex. This
structureis defined in veeData . h as:

Appendix G 583

About Callable VEE
Using the VEE RPC API

typedef struct {double rval, ival;} veeComplex;

VDC vdcCreateComplexlDArray(int32 numPts,
veeComplex *values) ;

B Thisfunction returnsaVDC of type vEE PCOMPLEX Whichis
preallocated to a size equal to the argument, numpPts. The type of the
argument, int32, istype defined to type 1ong in veeData.h. The
argument, values, pointsto an array of structures of type
veePComplex. Thisstructureis defined in veeData.h as:

typedef struct {double mag, phase;} veePComplex;

VDC vdcCreatePComplexlDArray(int32 numPts,
veePComplex *values) ;

B ThisfunctionreturnsaVVDC of type VEE_COORD which is preallocated to
asize equal to the argument, numpts. The type of the argument, int32,
istype defined to type 1ong in veeData . h. Theargument, values,
pointsto an array of structures of type vee2DCoord. This structureis
defined in veeData.h as.

typedef struct {double xval, yval;} vee2DCoord;

VDC vdcCreate2DCoordlDArray(int32 numPts,
vee2DCoord *values) ;

B ThisfunctionreturnsaVDC of type VEE_COORD which is preallocated to
asize equal to the argument, numpts. The type of the argument, int32,
istype defined to type 1ong in veeData . h. The argument, values,
pointsto an array of structures of type vee3bCoord. This structureis
defined in veebData.h as.

typedef struct {double xval, yval, zval;}
vee3DCoord;

VDC vdcCreate3DCoordlDArray(int32 numPts,
vee3DCoord *values) ;

B ThisfunctionreturnsaVDC of type VEE_COORD which is preallocated to
asize equal to the argument, numbts. The argument, aFieldCount, iS

584 Appendix G

About Callable VEE
Using the VEE RPC API

the number of fieldsin the coordinates. Thetype of theargument, int32,
istype defined to type 1ong in veeData . h. Theargument, values,
pointsto an array of type double. Thelength of thisarray must be equal
to the product of numpts and aFieldCount.

VDC vdcCreateCoordlDArray(int32 numPts,
intl6 aFieldCount,
double *values) ;

B Thisfunction returnsaVDC of type VEE_WAVEFORM With a number of
samples equal to the argument, numpPt s. The starting and ending times
for the waveform are the arguments, from and thru. The argument,
mapType, iSOf type vMT, defined in veeData.h since it declareswhat
type of mapping is used. See “Data Types, Shapes and Mappings’ on
page 579 for more information.

The array of doubles pointed to by the argument, data, must be equal in
size to the argument, numpPts. The type of the argument, int32, istype
defined to type 1ong in veeData . h.

VDC vdcCreateWaveform(int32 numPts,
double from,
double thru,
VMT mapType,
double *data) ;

B Thisfunction returnsaVDC of type VEE SPECTRUM With a number of
samples equal to the argument, numpts. The starting and ending
frequencies for the spectrum are the arguments, £rom and thru. The
argument, mapType, is Of type vMT, defined in veeData.h since it
declares what type of mapping is used. See “Data Types, Shapes and
Mappings’ on page 579 for more information.

The array of type veePComplex pointed to by the argument, data, must
be equal in size to the argument, numPts . Type. veePComplex isa
structure defined in veeData . h:

typedef struct {double mag, phase;} veePComplex.

Appendix G 585

About Callable VEE
Using the VEE RPC API

The array of structuresis copied. The type of the argument, int32, is
type defined to type 1ong in veeData . h.

VDC vdcCreateSpectrum(int32 numPts,
double from,
double thru,
VMT mapType,
veePComplex *data) ;

In the functions listed above, you specify an array size, any additional data
needed to represent the array (such as mapping datafor vEE_wAVEFORM and
VEE_SPECTRUM types) and the array dataand get back aVDC (or aNULL if
something goes wrong).

You can convert back from VDCsto C arrays with:

B Thisfunction returns a pointer to an array of type int32. The argument,
avD, must be of type, VEE_LONG and be an array. The value returned in
the pass-by-reference argument, numPt s, isthe length of the array.

int32* vdcGetLonglDArray(VDC aVD,
int32 *numPts) ;

B Thisfunction returns a pointer to an array of type double. The
argument, avb, must be of type, VEE DOUBLE. The value returned in the
pass-by-reference argument, numpbt s, is the length of the array.

double* vdcGetDoublelDArray(VDC aVD,
int32 *numPts) ;

B Thisfunction returns a pointer to an array of pointers each pointing to a
null terminated string. The argument, avb, must be of type VEE STRING.
The value returned in the pass-by-reference argument, numpPt s, isthe
number of strings.

char** vdcGetStringlDArray(VDC aVD,
int32 *numPts) ;

B Thisfunction returns a pointer to an array of structures of type,
veeComplex. Thisstructureisdefined in veebata.h as:

typedef struct {double rval, ival;} veeComplex;

586 Appendix G

About Callable VEE
Using the VEE RPC API

The argument, avD, must be of type VEE_coMPLEX. The value returned
in the pass-by-reference argument, numpt s, is the length of the array.

veeComplex* vdcGetComplexl1DArray(VDC aVvD,
int32 *numPts) ;

B Thisfunction returns a pointer to an array of structures of type,
veePComplex. Thisstructureis defined in veeData.h as:

typedef struct {double mag, phase;} veePComplex;

The argument, avD, must be of type VEE_pcoMpPLEX. The value returned
in the pass-by-reference argument, numpt s, is the length of the array.

veePComplex* vdcGetPComplexlDArray(VDC avVvD,
int32 *numPts) ;

B Thisfunction returns a pointer to an array of structures of type,
vee2DCoord. Thisstructureis defined in veebData.h as:

typedef struct {double xval, yval;} vee2DCoord;

The argument, avD, must be of type vEE _CcOORD. The value returned in
the pass-by-reference argument, numpt s, isthe length of the array.

vee2DCoord* vdcGet2DCoordlDArray (VDC aVvD,
int32 *numPts) ;

B Thisfunction returns a pointer to an array of structures of type,
vee3DCoord. Thisstructureisdefined in veeData.h as.

typedef struct {double xval, yval, zval;}
vee3DCoord;

The argument, avD, must be of type VEE_COORD. The value returned in
the pass-by-reference argument, numpts, isthe length of the array.

vee3DCoord* vdcGet3DCoordlDArray (VDC aVvD,
int32 *numPts) ;

B Thisfunction returns a pointer to an array of type double. The
argument, avD, must be of type VEE_COORD. The value returned in the

Appendix G 587

About Callable VEE
Using the VEE RPC API

pass-by-reference argument, numpbt s, isthe number of coordinate tuples
in the array. The value returned in the pass-by-reference argument,
aFieldCount, isthe number of fieldsin each coordinate tuple. The
length of the returned array isthe product of numpts and aFieldCount.

double* vdcGetCoordlDArray(VDC aVD,
int32 *numPts,
intl6 *aFieldCount) ;

B Thisfunction returns a pointer to an array of type double. The
argument, avb, must be of type VEE_WAVEFORM. The pass-by-reference
arguments numbPt s, from, thru and mapType return, respectively, the
length of the array, the start time, the end time and the type of mapping.

double* vdcGetWaveform(VDC aVvD,
int32 *numPts,
double *from,
double *thru,
VMT *mapType) ;

B Thisfunction returns a pointer to an array of structures of type
veePComplex. Thisstructureis defined in veeData.h as:

typedef struct {double mag, phase;} veePComplex;

The argument, avD, must be of type VEE_ WAVEFORM. The pass-by-
reference arguments numpPt s, from, thru and mapType return,
respectively, the length of the array of structures, the starting frequency,
the ending frequency, and the type of mapping.

veePComplex* vdcGetSpectrum(VDC aVvD,
int32 *numPts,
double *from,
double *thru,
VMT *mapType) ;

Thesefunctionstake aVDC, return apointer to the array of datadirectly and
return the size of the array (or any other relevant information) as arguments.

Once the arrays are created, you can also check, interrogate, or manipulate
the arrays with the following functions:

588 Appendix G

Enum Types

About Callable VEE
Using the VEE RPC API

int32 vdcSetNumDims (VDC, intlé);
intl6 vdcGetNumDims (VDC) ;

int32 vdcSetDimSizes(VDC, int32*);
int32 *vdcGetDimSizes(VDC) ;

int32 vdcCurNumElements (VDC) ;

V EE enumerated types, as noted, are ordered lists of strings and are handled
by the following routines:

B Thisfunction creates an empty VEE_ENUM structure with the given
number of string-ordinal pairs. It returnsaNULL VDC on error.

VDC vdcCreateEnumScalar(intlé numberOfPairs) ;

B Thisfunction places an enumerated pair in the defined VEE ENUM
structure, returns the updated structure and returns 0 or an error code.

int32 vdcEnumAddEnumPair (VDC aVvD,
char* aString,
int32 aVvalue) ;

B Thisfunction deletes an enumerated pair as given by the ordinal value
argument. It returns O or an error code.

int32 vdcEnumDeleteEnumPairWithOrdinal (VDC aVvD,
int32 anOrd) ;

B Thisfunction sets an ordinal value for use by other vdcEnum routines. It
returns O or an error code.

int32 vdcSetEnumScalar (VDC aVD,
int32 anOrdinal) ;

B Thisfunction placesastring in the VEE_ENUM structure with the
ordinal value assigned by vdcSetEnumScalar ().

int32 vdcEnumDeleteEnumPairWithStr (VDC aVvD,

Appendix G 589

About Callable VEE
Using the VEE RPC API

char* aString) ;

B Thisfunction returns the current ordinal number selection assigned by
vdcSetEnumScalar ().

int32 vdcGetEnumOrdinal (VDC aVvD) ;

B Thisfunction returns the string associated with the current ordinal
number, or aNULL string if something goes wrong.

char* vdcGetEnumString(VDC aVvD) ;

590 Appendix G

About Callable VEE
Using the VEE RPC API

Mapping Functions The VEE DATA API allows you to manipulate the mappings of arrays with

the following functions:

int32 vdcAtDimPutLowerLimit (VDC aVvD,
intlé aDim,
double aVvalue) ;
// Specify mapping for lower limit.

int32 vdcAtDimPutUpperLimit (VDC aVD,
intlé aDim,
double aValue) ;
// Specify mapping for upper limit.

int32 vdcAtDimPutRange (VDC aVD,
intlé aDim,
double lowerLimit,
double upperLimit) ;
// Combines "vdcAtDimPutLowerLimit" &
"vdcAtDimPutUpperLimit".

int32 vdcAtDimPutMapping(VDC aVD,
intlé aDim,
VMT aMapping) ;
// Set the mapping between limits as defined above.

int32 vdcMakeMappingsSame (VDC VD1,
VDC VD2) ;
// Map two containers in the same way.

int32 vdcUnMap(VDC aVvD) ;
// Delete mapping information from container.

Other Functions Other VEE DATA API functions include:

B Get thetype of VDC. Return VEE_NOTDEFINEDI ON €fror.

enum veeType vdcType(VDC aVvD) ;
B Makeacopy of aVDC. Return NULL on error.

VDC wvdcCopy(VDC 0ldvD) ;

Appendix G 591

About Callable VEE
Using the VEE RPC API

B Destroy acontainer and release its memory. Return NULL on error.
VDC vdcFree(VDC avD) ;
B Get error number/message of last error.

intlé veeGetErrorNumber (void) ;
char *veeGetErrorString(void);

B Reset error number to zero.

void veeClearErrorNumber (void)

Thisfunction should be called to reset the error number to 0 before calling a
C to VEE function where the error code can be set as a side effect and where
you need to retrieve that error code with veeGet ErrorNumber (). Calling
veeClearErrorNumber () first ensuresthat the cal to
veeGetErrorNumber () returnsan error code set only by functions
executed between the callsto veeClearErrorNumber () and
veeGetErrorNumber ().

592 Appendix G

| ndex

Symbols

#A block headers, 95, 493
#B notation

with READ INTEGER, 499
#H notation

with READ INTEGER, 499
#1 block headers, 95, 493
#Q notation

with READ INTEGER, 499
#T block headers, 95, 493
$XENVIRONMENT, 7
*|DN?, 252
.DLL, 47
fp (HP-UX), 48
.FP (Windows), 47
h (UNIX), 48
H (Windows), 47
hip (UNIX), 48
HLP (Windows), 47
g, 48
veeiofile

detailed explanation, 189

Numerics

Ox notation
with READ INTEGER, 499

A

A16 Space tab, 104—107
A24/A32 Space tab, 108—111
ABORT
for EXECUTE, 532
accessing
examples, 14
library objects, 15
records, 358
variable values, 352
accessing older drivers, 250
ActiveX
adding control to program, 428
automation, 402, 423
automation and controls, 400
automation properties and methods,
408

automation type libraries, 402
browser, 411
control properties dialog, 428
control selection, 426
control variables, 430
controls, 400, 426
creating automation object, 405
data type compatibility, 414
declaring variables, 404, 430
default properties, 409
deleting automation objects, 423
enumerations, 410
event handling, 423, 429
examples, 401
getting existing automation object,
407
manipulating automation obj ects, 408
manipulating controls, 431
online help, 429
type library selection, 402
using controls, 430
ActiveX automation, 401
Add Location (VXI only)
in Direct I/O Configuration, 109
Add Register (VX1 only)
in Direct 1/O Configuration, 105
Add Trans, 116
adding
Component Driver, 72
instrument configuration, 67
Panel Driver, 72
address space, excluding, 218
addresses
configuring GPIB, 86
configuring GPIO, 86
configuring serial, 86
configuring VXI, 86
GPIB example, 88
GPIO example, 88
instrument, 252
of drivers, 98
programming, 192
serial example, 88
VX1 example, 88
when changing, 245

594 Index

addressing
GPIO, 214
1/0, 214—218
serial, 214
VXI, 216, 218
Advanced GPIB, 204
Advanced |I/0, 249
Advanced Instrument Properties, 69
A16 Space, 104—107
A24/A32 Space, 108111
General, 89—90
GPIO, 103
Panel Driver, 99—101
Plug& play Driver, 97—99
Serid, 102
Advanced Instrument Properties Dialog
Box
Direct I/O Tab, 91
General Tab, 89
Advanced VXI, 204
AlnSingle method, 84
ALL CLEAR
in WAIT REGISTER or MEMORY
transactions, 542
in WAIT SPOLL transactions, 542
Allocate Array, 247
ANY SET
in WAIT REGISTER or MEMORY
transactions, 542
in WAIT SPOLL transactions, 542
APl
VEE DATA, 578
app-defaults for VEE, 7
ARRAY
reading arrays, 121
reading scalars, 121
read-to-end, 121
array data
auto-allocation, 242
Array Format
in Direct 1/0 Configuration, 93
in transaction objects, 133
Array Separator
in Direct 1/0 Configuration, 93
in transaction objects, 132

array size, 247
arrays, 305, 312
reading with transactions, 121
sharing with Rocky Mountain Basic,
165
using commas, 29, 30
ASCI| table, 560
assignment operator, 317
asynchronous objects, 23
attributes
changing, 7
location of file, 7
Auto Discovery, 59
Auto Execute, 22
auto-allocate feature, 242
automation (see ActiveX)
Autoscale, 557

B

backward compatibility, 234, 250
BINARY encoding
for READ, 524
for WRITE, 490
Binblock
in Direct 1/O Configuration, 95
BINBLOCK Encoding
for READ, 526
BINBLOCK encoding
for WRITE, 492
binding
shared library, 386
bitmaps
customizing, 6
panel view, 6
selecting, 6
Block Array Format, 93, 133
block data formats, 492
block headers, 95, 492
blocking reads
IOSTATUS (READ), 530
bounds checking, 25
building records, 362
Bus /O Monitor, 208, 249
Byte Access (VXI only)
in Direct I/O Configuration, 104, 108

Index 595

BY TE encoding
for WRITE, 488

BYTE format
for READ BINARY, 524
for READ BINBLOCK, 526
for READ MEMORY, 529
for READ REGISTER, 528
for WRITE BINARY/, 490
for WRITE BINBLOCK, 492
for WRITE MEMORY, 496
for WRITE REGISTER, 495

C

CcallsVEE, 570
C datatypes, 578
C programs, 154
communicating with, 149, 166
C Typesalowedin DLL, 388
Call, 25, 251
time-dicing, 369
Cadllable VEE, 570
Callable VEE Automation Server, 570
callbacks, 249
caling
DLL Functions, 390
precedence, 22
UserFunctions, 370
CASE encoding
for WRITE, 489
changing
geometry, 7
X11 attributes, 7
CHAR format
for READ TEXT, 499, 506
checking
caution, 246
errors, 245
CLEAR
effect on write pointers, 140
CLEAR (Files)
for EXECUTE, 532
Clear File at PreRun & Open, 140
Client
DDE, 169
CLOSE

effect on files, 140
for EXECUTE, 532
CLOSE READ PIPE
for EXECUTE, 532
CLOSE WRITE PIPE
for EXECUTE, 532
close(), 237, 245, 253
closing drivers, 244
closing files, 140
Collector, 23
color maps
dealing with different, 8—11
colors
line, 21, 304, 556
colors flashing
correcting, 8—11
COMMAND
in SEND transactions, 185, 544
common problems, 548
Compiled Function, 376—391
DLL, 387
MS Windows, 387
Compiled Functions
precedence of,, 22
Compiled mode, 17
compiler
object changes, 28
COMPLEX format
for READ BINARY, 524
for READ BINBLOCK, 526
for READ TEXT, 499, 523
for WRITE BINARY, 490
for WRITE BINBLOCK, 492
for WRITE TEXT, 462, 483
component, 223
Component Driver
adding, 72
Component Drivers
detailed explanation, 223
example program, 231
how Component Driverswork, 225,
226
overview, 50
used in asimple program, 51
using in programs, 230

596 Index

using multiple driver objects, 227
components
examples, 223
configuration
instrument details, 85—111
instruments, 56—111
programmatic, 192
configuring
Direct /O, 76—78
GPIB cards, 218
transaction objects, 130
VXIplug&play driver, 79—82
configuring an interface, 111
configuring VEE, 5
Conformance
effects on learn strings, 494
effects on WRITE STATE, 494
in Direct 1/0 configuration, 95, 178,
179
Connect/Bind Port
in To/From Socket, 158
Constant, 240
constraining inputs, 557
container
record, 357
CONTAINER encoding
for READ, 527
for WRITE, 494
containers, 302
Contexts, 268
control pin
data propagation, 288
control pins, 262
Controls, 238
controls (see ActiveX)
converting
between UserObjects and
UserFunctions, 369
datatypes, 578
programs, 29
COORD format
for READ BINARY, 524
for READ BINBLOCK, 526
for READ TEXT, 499, 523
for WRITE BINARY/, 490

for WRITE BINBLOCK, 492

for WRITE TEXT, 462, 483
Copy Trans, 116
correcting changing screen colors, 8—11
coupling, 227
Create Terminal, 241
CreateObject, 405
creating

bitmaps, 6

UserFunction library, 373
critical section

protecting, 198
CTL

for WRITE IOCONTROL, 497
CTLOline

on GPIO interfaces, 497
CTL1line

on GPIO interfaces, 497
cursor keys

for editing transactions, 117
customizing bitmaps, 6
Cut Trans, 116

D

DATA
in SEND transactions, 185, 544
data, 312
in transactions, 118
data containers, 299, 302, 578
datafield
in transactions, 118
data flow. See propagation
Data Format dialog box, 130
Data Format tab, 131
datapins, 262
data shapes, 305
records, 362
datatype
conversion, 35
datatypes, 302, 310
conversion for instrument 1/O, 554
converting, 578
in ActiveX, 414
mapped, 580
record, 356

Index 597

Data Width

in Direct 1/0 Configuration, 103
DataSet, 356, 365

logging to, 445
DCL (Device Clear), 185, 544
DDE, 169

Client, 169

Server, 169
dealing with color maps, 8—11
Declare Variable

used in libraries, 373
Declare Variables, 557
declared variables, 348
default attributes

location of file, 7
DEFAULT format

for WRITE TEXT, 462, 464
DEFAULT NUM CHARS

effects on READ TEXT, 503
Definite Length Arbitrary Block

Response Data, 492

Definition Filefor DLL, 388
DEG phase units, 485
delay, 244
Delete Library, 253
Delete Location (VXI only)

in Direct 1/0 Configuration, 111
Delete Register (VX1 only)

in Direct 1/0O Configuration, 106
Delete Variable

All, 353

By Name, 353

Delete Variables at PreRun, 350, 353

Deleting DLL Libraries, 391
delimiter

in READ TEXT TOKEN

transactions, 508

DeMultiplexer, 289
Description

in Instrument Properties, 90
Device Clear (DCL), 185, 544
Device Event, 204, 205, 249

serial poll, 204

service reguests, 205
dialog box

Instrument Configuration, 86—88
Instrument Properties, 85—88
Differencesin VEE platform
implementations, 568
Direct 1/0
configuring, 76—78

EXECUTE transactions (GPIB), 537

EXECUTE transactions (VXI), 539
general usage, 176—181

overview of controlling instrument, 44

Direct 1/0O Configuration
Add Location (VXI only), 109
Add Register (VX1 only), 105
Array Format, 93
Array Separator, 93
Binblock, 95
Byte Access (V XI only), 104, 108
Conformance, 95
Data Width, 103
Delete Location (VXI only), 111
Delete Register (VXI only), 106
Download String, 96
END On EOL, 94
EOL Sequence, 92
LongWord Access (VX1 only), 105,
109
Multi-field As, 92
Read Terminator, 91
State, 96
Upload String, 96
Word Access (VXI only), 104, 109
Disable Debug Features, 558
Display Server, 394
Distributed Component Object Model
(DCOM), 406
DLL, 568
.DEFfile, 388
C declarations, 388
C Types alowed, 388
Calling Functions, 390
Configuring Calling Functions, 390
creating, 387, 388
Definition File, 388
deleting libraries, 391
functions in formulas, 391

598 Index

importing libraries, 390
parameters, 389
Download
general usage, 178, 179
Download String
in Direct 1/0O Configuration, 96
downloading
to instruments, 210
driver files, 223
reusing, 228
drivers
accessing older, 250
function panel, 47, 48
header, 47, 48
help, 48
help on, 47, 232, 243
initializing and closing, 244
I-SCPI, 52
library, 47, 48
Setting address, 98
dyadic operators, 322
Dynamic Data Exchange, 169
Dynamic Data Exchange (DDE), 401

E

editing
instrument configuration, 73
interface configuration, 75
transactions, 116
UserFunction libraries, 375

encodings
BINARY (WRITE), 490
BINBLOCK (WRITE), 492
BYTE (WRITE), 488
CASE (WRITE), 489
CONTAINER (READ), 527
CONTAINER (WRITE), 494
for READ transactions, 498
for WRITE transactions, 460
IOCONTROL (WRITE), 497
IOSTATUS (READ), 530
MEMORY (READ), 529
MEMORY (WRITE), 496
REGISTER (READ), 528
REGISTER (WRITE), 495

STATE (WRITE), 494
TEXT (WRITE), 462
END, 94
End of Line (EOL)
in transaction objects, 132
END On EOL
in Direct 1/O Configuration, 94
EOF, 25
EQl, 94
EOL
in transaction objects, 132
EOL Sequence
in Direct 1/O Configuration, 92
EQUAL
in WAIT REGISTER or MEMORY
transaction, 542
errhndl.bmp, 284
error 935, 24
error 937, 23
error 938, 27
error checking, 245
error checking in instrument driver
configuration, 100
error field, 239
error pin, 263
errors
parse, 552
remote function, 398
escape characters
listed, 92, 120
example programs
accessing, 14
communicating with Rocky Mountain
Basic, 164, 165
directories, 14
importing awaveform file, 146, 148
reading XY datafrom afile, 143
running C programs, 154
running shell commands, 152
using EOF to read files, 143
examples, 14
impact of 1/0O configuration, 190
using instrument learn strings, 180
VXlplug&play, 48
EXCLUDE CHARS

Index 599

for READ TEXT TOKEN, 508, 511

excluding address space, 218
EXECUTE, 532—541
file pointers, 139
EXECUTE LOCK, 199
Execute Program, 166
general usage, 149
running C programs, 154
Wait for Prog Exit, 151
Execute Program (PC), 568
general usage, 166
Prog With Params, 168
Run Style, 167
Wait for Prog Exit, 167
Working Directory, 168
Execute Program (UNIX), 568
Prog With Params, 151
read-to-end, 153
running shell commands, 152
Shell, 150
EXECUTE transactions
ABORT, 532
ABORT (GPIB), 537
CLEAR (Files), 532
CLEAR (GPIB), 532, 537
CLEAR (VXI), 540
CLOSE, 532
CLOSE READ PIPE, 532
CLOSE WRITE PIPE, 532
LOCAL, 532
LOCAL (GPIB), 538
LOCAL (VXI), 540
LOCAL LOCKOUT, 532

LOCAL LOCKOUT (GPIB), 539

REMOTE, 532
REMOTE (GPIB), 538
REMOTE (VXI), 541
REWIND, 532
TRIGGER, 532
TRIGGER (GPIB), 538
TRIGGER (VXI), 540
execution
increasing speed of, 556
execution flow. See propagation
Execution Mode

Disable Debug Features, 558
Execution Modes, 17
compiler, 19
setting, 17
switching, 19
execution order, 25
Exit, 245
expression list
in transactions, 119
expressions, 312
calling UserFunctions, 370
changes for VEE 5 mode, 30

F

feedback, 24

fields
compiler mode, 28
editing records, 363

files
.veeio, 398
.veerc, 398
closing, 140
driver files, 223
From File, 139
From Stdin, 139
importing data, 143
installed, 47
pointers, 139
reading, 143

reading and writing with transactions,

139

To File, 139

To SdErr, 139

To StdOut, 139

using different attributes, 7
FIXED notation

for WRITE TEXT REAL, 481
flashing colors

correcting, 8—11
for EXECUTE, 532
For Log Range

not operating, 551
For Range

in compile mode, 25

not operating, 551

600 Index

formats
BYTE (READ BINARY), 524
BYTE (READ BINBLOCK), 526
BYTE (READ MEMORY), 529
BYTE (READ REGISTER), 528
BYTE (WRITE BINARY), 490
BYTE (WRITE BINBLOCK), 492
BYTE (WRITE MEMORY), 496
BYTE (WRITE REGISTER), 495
CHAR (READ TEXT), 499, 506
COMPLEX (READ BINARY), 524
COMPLEX (READ BINBLOCK),
526
COMPLEX (READ TEXT), 499, 523
COMPLEX (WRITE BINARY), 490
COMPLEX (WRITE BINBLOCK),
492
COMPLEX (WRITE TEXT), 462,
483
COORD (READ BINARY), 524
COORD (READ BINBLOCK), 526
COORD (READ TEXT), 499, 523
COORD (WRITE BINARY), 490
COORD (WRITE BINBLOCK), 492
COORD (WRITE TEXT), 462, 483
DEFAULT (WRITE TEXT), 462, 464
for READ MEMORY, 529
for READ REGISTER, 528
for READ TEXT transactions, 499
for WRITE MEMORY , 496
for WRITE REGISTER, 495
for WRITE TEXT, 462
for WRITE transactions, 460
HEX (READ TEXT), 499, 518
HEX (WRITE TEXT), 462, 478
INT16 (READ BINARY), 524
INT16 (READ BINBLOCK), 526
INT16 (WRITE BINARY), 490
INT16 (WRITE BINBLOCK), 492
INT32 (READ BINARY), 524
INT32 (READ BINBLOCK), 526
INT32 (WRITE BINARY), 490
INT32 (WRITE BINBLOCK), 492
INTEGER (READ TEXT), 499, 515
INTEGER (WRITE TEXT), 462, 473

OCTAL (READ TEXT), 499, 517
OCTAL (WRITE TEXT), 462, 476
PCOMPLEX (READ BINARY), 524
PCOMPLEX (READ BINBLOCK),
526
PCOMPLEX (READ TEXT), 499,
523
PCOMPLEX (WRITE BINARY), 490
PCOMPLEX (WRITE BINBLOCK),
492
PCOMPLEX (WRITE TEXT), 462,
483
QUOTED STRING (READ TEXT),
499, 514
QUOTED STRING (WRITE TEXT),
462, 468
REAL (READ TEXT), 499, 519
REAL (WRITE TEXT, 480
REAL (WRITE TEXT), 462
REAL 32 (READ BINARY), 524
REAL32 (READ BINBLOCK), 526
REAL32 (READ MEMORY), 529
REAL 32 (READ REGISTER), 528
REAL32 (WRITE BINARY), 490
REAL 32 (WRITE BINBLOCK), 492
REAL32 (WRITE MEMORY), 496
REAL 32 (WRITE REGISTER), 495
REAL64 (READ BINARY), 524
REAL64 (READ BINBLOCK), 526
REAL64 (WRITE BINARY, 490
REAL64 (WRITE BINBLOCK), 492
STRING (READ BINARY), 524
STRING (READ TEXT), 499, 512
STRING (WRITE BINARY, 490
STRING (WRITE TEXT), 462, 465
TIME STAMP (READ TEXT, 499
TIME STAMP (WRITE TEXT), 462,
486
TOKEN (READ TEXT), 499, 508
WORD16 (READ MEMORY), 529
WORD16 (READ REGISTER), 528
WORD16 (WRITE MEMORY), 496
WORD16 (WRITE REGISTER), 495
WORD32 (READ MEMORY), 529
WORD32 (READ REGISTER), 528

Index 601

WORD32 (WRITE MEMORY), 496

WORD32 (WRITE REGISTER), 495
Formula, 247

calling UserFunctions, 370

DLL Functions, 391
frameworks supported, 46
From File, 25

general usage, 139
From Stdin

general usage, 139

non-blocking reads, 139
From String

general usage, 138
Function & Object Browser

used for ActiveX, 411
function panels

help on, 239

required files, 47

UNIX files, 48

Windowsfiles, 47
functions, 312

caled from C, 570

handling scalar data, 580

merging, 375

precedence, 22

see also Compiled Functions, Remote

Functions, UserFunctions

selecting, 236

user, 369

user-defined, 368—398

using, 235

G

Gateway

in Instrument Configuration, 88
gateway for LAN, 193
General Protection Fault, 246
General tab, 8990
geometry

changing, 7
Geometry, on Import Library, 394
GET (Group Execute Trigger), 185, 544
Get Field

accessing records, 358
Get Global, 256

Get Variable, 350
GetObject, 407
getting help
on function panel, 239
To/From VXIplug& play, 241
global namespace, 31
global variables, 314, 557
deleting, 353
scoping, 348
undeclared, 347
using, 346
Go To Local (GTL), 185, 544
GPIB
advanced features, 204
configuring, 218
Direct 1/0, 537
Interface Operations, 537
logical unit, 215, 216
low-level control, 184, 209, 537
seria poll, 204
service requests, 205
GPIB Bus Operations
detailed reference, 544
GPIB Msg, 560
GPIO
addressing, 214
Data Width, 103
tab, 103
GPIO interfaces
READ transactions, 530
WRITE transactions, 497
GRAD phase units, 485
grayed
features, 551-552
fields in compiler mode, 28
fieldsin iterators, 25
Group Execute Trigger (GET), 185, 544
Group name, 240
GTL (Go To Local), 185, 544

H

handle, 252

handling scalar data, 580
header file, 47, 48

help, 47, 48, 241

602 Index

on function panel, 239
on HP Instrument Drivers, 232
on VXIplug& play drivers, 243
help file, 47
HEX format
for READ TEXT, 499, 518
for WRITE TEXT, 462, 478
Host Name
in To/From Socket, 159
HP 3325B
example Panel Drivers, 50
HP 3852A
downloading example, 210
HP Instrument Drivers
help on, 232
HP-GL
plotter support, 11
HP-1B
related documents, 38
standards, 38
HP-UX
location of files, 48

1/0
addressing, 214—218
Bus /O Monitor, 208
configuration file, 189
programmatic configuration, 192
sub address, 217
supported interfaces, 16
icons
creating bitmaps for, 6
ID filename in instrument driver
configuration, 100
ID Query, 252
IEEE 488.1
bibliography, 38
|EEE 488.2
bibliography, 38
IEEE 728
bibliography, 38
block header formats, 95
block headers, 493
Ignore Cautions Returned, 246

Implementation Differences, 568

Import Library, 251, 374

Imported UserFunctions
precedence of,, 22

importing data, 143

Importing DLL Libraries, 390

INCLUDE CHARS

for READ TEXT TOKEN, 508, 509

INCR
for READ MEMORY, 529
for READ REGISTER, 528
for WRITE MEMORY, 496
for WRITE REGISTER, 495
Incremental Mode
effects on Panel Drivers, 226
incremental mode

in instrument driver configuration,

100
Init Rocky Mountain Basic
general usage, 149, 162
init(), 237, 244, 245, 252
initializing drivers, 244
Insert Trans, 116
installed files, 47
instriD, 253
Instrument BASIC, 210
Instrument Configuration
Addressfield, 86
dialog box, 86—88
Gateway field, 88
Interface field, 86
Name field, 86
instrument configuration
adding, 67
editing, 73
instrument driver configuration
error checking, 100
ID filename, 100
incremental mode, 100
sub address, 100
instrument drivers
function panel, 47, 48
header, 47, 48
help, 48
help files, 47

Index 603

library, 47, 48
instrument /O, 310
instrument 1/0 logical units, 212
Instrument Manager
an overview, 58
Auto Discovery buttons, 59
renaming an instrument, 65
using, 586—84
Instrument Properties
Description field, 90
dialog box, 85—88
Live Mode field, 90
Timeout field, 89
instrument state, 225
instruments
addresses, 252
Bus /0O Monitor, 208
Component Driver example, 231
configuration, 56—111
configuration details, 85—111
configuring, 227
details about Panel Drivers and
Component Drivers, 223
downloading, 210
driver files, 223
driver-based objects, 49
finding, 244
help, 232, 243
interrupts, 205
overview of Component Drivers, 50
overview of Direct 1/0, 44
overview of Multilnstrument Direct |/
O, 44
overview of Panel Drivers, 49
serial poll, 204
service requests, 205
state records, 225
states, 225
troubleshooting, 548
using Component Driversin
programs, 230
using Direct 1/O, 176—181
using multiple driver objects, 227, 228
using Panel Driversin programs, 229
using Panel Driversinteractively, 229

INT16 format
for READ BINARY, 524
for READ BINBLOCK, 526
for WRITE BINARY, 490
for WRITE BINBLOCK, 492
INT32 format
for READ BINARY, 524
for READ BINBLOCK, 526
for WRITE BINARY, 490
for WRITE BINBLOCK, 492
INTEGER format
for READ TEXT, 499, 515
for WRITE TEXT, 462, 473
Interface
in Instrument Configuration, 86
interface configuration
editing, 75
Interface Event, 205
service requests, 205
Interface Operations, 184—185, 209, 249
EXECUTE transactions (VXI), 537,
539
interface properties, 111
Interface Properties dialog box, 111
interface,user (see panel view)
interfaces
supported, 16
internal functions
precedence of,, 22
Interpreted SCPI (1-SCPI), 52
interprocess communication
To/From Named Pipe, 155
To/From Socket, 157
interrupts, 205
intersecting loops, 27
Junction, 28
INTERVAL
for WAIT, 541
IOCONTROL encoding
for WRITE, 497
IOSTATUS encoding
for READ, 530
I-SCPI, 52
|I-SCPI drivers, 91
Iso, 11

604 Index

iteration, 25 LOCAL

iterations, 25 for EXECUTE, 532
iterators LOCAL LOCKOUT
intersecting, 27 for EXECUTE, 532
intersecting with Junction, 28 Local Lockout (LLO), 185, 544
local scoping, 348
J local UserFunctions
Junction, 24 | Op;;Iec\;e;jrtiagt():lee(s)f, 2
intersecting loops, 28 :
using, 346
parallel, 26 location of HP-UX files, 48
location of Windowsfiles, 47
K logging
Katakana, 11 to a DataSet, 445
keyboards logging test results, 442
non-USASCII, 11 restrictions, 436
keys logical unit
for editing transactions, 117 GPIB, 215, 216
logical units
L recommended, 212
LongWord Access (VXI onl
LAN gatgway, 193 in Direct I/O Cong‘iguraiior):,) 105, 109
t&aﬂ nstsrtirr:ggS’ 44 loop bounds, 25
with Direct /O, 178, 179 loops, 25

librari intersecting, 27
toranes intersecting with Junction, 28
editing imported, 375

genera use of, 372

importing, 375 M
merging, 375 Make UserFunction, 369
user-defined, 368—375 Make UserObject, 369
UserFunction, 373 mapping arrays, 580
using variablesin, 353, 373 math processing, 312
library file, 47, 48 MAX NUM CHARS
library objects, 15 effects on READ TEXT, 503
accessing, 15 MEMORY
limitations, 249 for WAIT, 541
line colors, 21, 304, 556 memory
Linear Array Format, 93, 133 auto-allocation, 242
LISTEN MEMORY encoding
in SEND transactions, 185, 544 for READ, 529
LIVE MODE, 249 for WRITE, 496
Live Mode menu features
in Instrument Properties, 90 grayed, 551—552
in Multilnstrument Direct 1/O, 184 Merge Library, 375
LLO (Local Lockout), 185, 544 merging

Index 605

xrdb, 7
message-based, 52
MultiDevice Direct 1/0

Object Menu, 184
Multi-field As

in Direct 1/0O Configuration, 92
multi-field data types, 92
Multi-Field Format

in transaction objects, 132
Multilnstrument Direct I/O

general usage, 181—184

Live Mode, 184

overview of controlling instrument, 44
MY LISTEN ADDR

in SEND transactions, 185, 544
MY TALK ADDR

in SEND transactions, 185, 544

N

Name, 241
effects on instrument objects, 227, 228
in Instrument Configuration, 86
namespace, 31
naming variables, 348
New, 245
new datatypes - Int16, 35
new datatypes - Real 32, 35
new datatypes - UInt8, 35
Non-blocking reads, 126
Non-Decimal Numeric formats
with READ INTEGER, 499
non-USASCII keyboards, 11
NOP, 241
in transactions, 118
notations
FIXED, 481
for READ TEXT INTEGER, 516
for WRITE TEXT REAL, 481
SCIENTIFIC, 481
STANDARD, 481
null
in READ transactions, 119

O

object changes

with the compiler, 28
objects

library, 15

operation, 259—261

pins, 261—264

pre-defined, 552
OCTAL format

for READ TEXT, 499, 517

for WRITE TEXT, 462, 476
ODAS, 56, 57, 83
OK, 23, 25
OLE automation (see ActiveX)
Open, 245
Open Data Acquisition Standard, 83
Open Example, 14
open view changes

with the compiler, 28
operators, 322

P

Panel Driver, 223
adding, 72
tab, 99—101
Panel Drivers
adding terminals, 230
detailed explanation, 223
how Panel Driverswork, 225
Incremental Mode, 226
overview, 49
two signal generator states, 50
using in programs, 229
using interactively, 229
using multiple driver objects, 227
Panel tab, 238
panel view
selecting a bitmap, 6
parallél junctions, 26
paralel threads, 25, 275
Parameter Type, 240
parameters
passing, 246, 253
size, 247
Parameters tab, 240

606 Index

parse errors, 552
passing parameters, 246, 253
Paste Trans, 116
PC Plugln card, 56, 83
PCOMPLEX format
for READ BINARY, 524
for READ BINBLOCK, 526
for READ TEXT, 499, 523
for WRITE BINARY, 490
for WRITE BINBLOCK, 492
for WRITE TEXT, 462, 483
PCPI, 57
PCTL
for WRITE IOCONTROL, 497
Perform Identification Query, 99
Perform Reset, 99
phase units
for WRITE PCOMPLEX, 485
pins
control, 262
datainput and output, 262
effect on propagation, 259—261, 261—
264
error, 263
sequence, 262
XEQ, 263
platform support, 47
plotter support
HP-GL, 11
Plug&play Driver
tab, 97—99
Plug& play driver
configuring, 79—82
pointers
relationship to transactions, 139
polling instruments, 204
precedence
functions, 22
variable names, 349
pre-defined objects, 552
PREFIX, 47, 48
PreRun
effects on file pointers, 140
Profiler, 556
Prog With Params

in Execute Program, 151, 168
Programmatic 1/O Configuration, 190
programs

configuring, 5

example, 14

execution order, 25

running, 244

speeding up, 556

troubleshooting, 548
propagation, 259—271

affected by pins, 259—261, 261—264

basic order, 261

summary, 265

of threads and subthreads, 264—265

in UserObjects, 267—271
Properties

in transaction objects, 130
properties

instrument details, 85—111

Q
Quad Access (D64), 110
QuadWord Access (D64), 110
QuadWord Access (D64) Field, 109
query functions, 37
querying instruments, 99
QUOTED STRING format
for READ TEXT, 499, 514
for WRITE TEXT, 462, 468
quoted strings
effectson READ TEXT STRING, 504
effects on READ TEXT TOKEN, 504

R

-r, 558

RAD phase units, 485

READ, 498531
file pointers, 139
non-blocking, 126
reading arrays, 121
simplified usage, 119
TEXT, 499

read pointers, 140

Read Terminator

Index 607

in Direct 1/0 Configuration, 91
READ TEXT STRING

effects of quoted strings, 504
READ TEXT TOKEN

effects of quoted strings, 504
Read to End

effectson READ TEXT, 502
Read to EOF

effects on READ BINARY, 525

effects on READ BINBLOCK, 526
READ transactions

TEXT, 181
READ(REQUEST) transactions, 546
reading files, 143
REAL format

for READ TEXT, 499, 519

for WRITE TEXT, 462, 480
REAL 32 format

for READ BINARY, 524

for READ BINBLOCK, 526

for READ MEMORY, 529

for READ REGISTER, 528

for WRITE BINARY/, 490

for WRITE BINBLOCK, 492

for WRITE MEMORY,, 496

for WRITE REGISTER, 495
REAL64, 110
REAL 64 format

for READ BINARY, 524

for READ BINBLOCK, 526

for WRITE BINARY/, 490

for WRITE BINBLOCK, 492
Record data type, 316
Record Fields

editing, 363
records

accessing, 358

building, 362

container, 357

data shape, 362

data type, 356

editing fields, 363

unbuilding, 361
recovering from common problems, 548
REGISTER

for WAIT, 541
REGISTER encoding
for READ, 528
for WRITE, 495
REMOTE
for EXECUTE, 532
Remote Debug, 394
Remote Function, 392—398
errors, 398
precedence of,, 22
required files, 47
reset flag, 252
resetting instruments, 99
Resource Manager, 244
restrictions
logging test results, 436
return value, 252
REWIND
effect on read pointers, 140
effect on write pointers, 140
for EXECUTE, 532
Rocky Mountain Basic
sharing colors with VEE, 8—11
Rocky Mountain Basic Objects, 162
Roman8 fonts, 11
round-robin, 25
Run Style
in Execute Program, 167
running
examples, 14
running programs, 244

S

Sample & Hold, 23
scalar data handling, 580
SCIENTIFIC notation

for WRITE TEXT REAL, 481
scoping, 348

global, 348

local, 348
SDC (Selected Device Clear), 185, 544
SECONDARY

in SEND transactions, 185, 544
security

UNIX, 396

608 Index

Segmentation Violation, 246

Selected Device Clear (SDC), 185, 544

selecting
functions, 236
selecting abitmap, 6
SEND transactions, 544
sequence pins, 262
Sequencer
calling UserFunctions, 370
object, 435
Sequencer object, 435
Serid
tab, 102
serial addressing, 214
serial poll, 204
Seria Poll Disable (SPD), 185, 544
Serial Poll Enable (SPE), 185, 544
Server
DDE, 169
service reguest (SRQ), 278
service reguests, 205
session handle, 238
session handles, 252, 256
set functions, 36
Set Global, 256
Set Variable, 350
shapes of data, 305
Shared Libraries, 568
shared library
creating, 386
Shell field
in Execute Program (UNIX), 150
SICL LAN gateway, 195
SPACE DELIM
for READ TEXT TOKEN, 508
SPD (Serial Poll Disable), 185, 544
SPE (Seria Poll Enable), 185, 544
Speed
increasing execution, 556
SPOLL, 249
for WAIT, 541
SRQ, 205
sratest.bmp, 279
STANDARD notation
for WRITE TEXT REAL, 481

Start, 22, 24
State
in Direct 1/0 Configuration, 96
STATE encoding
for WRITE, 494
state records
definition, 225
states
definition, 225
state records, 225
status
checking cautions, 246
checking errors, 245
Step, 25
STRING format
for READ BINARY, 524
for READ TEXT, 499, 512
for WRITE BINARY/, 490
for WRITE TEXT, 462, 465
sub address, 217
in instrument driver configuration,
100
subthreads
propagation of, 264—265
supported frameworks, 46
supported 1/O interfaces, 16

T

tab
A16 Space, 104—107
A24/A32 Space, 108—111
General, 8990
GPIO, 103
Panel Driver, 99101
Plug& play Driver, 97—99
Seria, 102
Take Control (TCT), 185, 544
TALK
in SEND transactions, 185, 544
TCT (Take Contral), 185, 544
temporary variables, 347
terminals, 302
name of variables, 347
using with transactions, 120
test sequencer, 435

Index 609

TEXT encoding
for WRITE, 462
threads
propagation of , 264—265
time delay, 244
TIME STAMP format
for READ TEXT, 499
for WRITE TEXT, 462, 486
Timeout
in Instrument Properties, 89
in To/From Socket, 159
timeouts
programming, 192
Timer, 23
time-dlicing, 22, 369
Timing Events, 295
To File
general usage, 139
To StdErr
general usage, 139
To StdOut
general usage, 139
To String
as adebugging tool, 129
example program, 115
general usage, 138, 139
To/From DDE, 169
To/From Named Pipe

EXECUTE CLOSE READ PIPE, 156

EXECUTE CLOSE WRITE PIPE,
156
general usage, 155
non-blocking reads, 156
read-to-end, 156
To/From Rocky Mountain Basic
general usage, 149, 162
To/From Socket
Connect/Bind Port, 158
general usage, 157
Host Name, 159
Timeout, 159
To/From VXIplug& play, 235
getting help, 241
TOKEN format
for READ TEXT, 499, 508

totSize(), 23
transactions
adding terminals, 120
configuring transaction objects, 130
creating, 116
debugging, 129
detailed reference, 456—546
details of operation, 130
editing, 116
EXECUTE, 209, 532
execution rules, 130
file pointers, 139
Multilnstrument Direct 1/0, 181—184
non-blocking reads, 139
overview, 115
READ, 498, 499
READ(REQUEST), 546
selecting, 135
SEND, 544
summary of objects using, 458
summary of transaction objects, 135
summary of types, 136, 457
To String, 129
To String example, 115
To/From Named Pipe, 155
To/From Socket, 157
using From File, 139
using From Stdin, 139
using From String, 138
using To File, 139
using To StdErr, 139
using To StdOut, 139
using To String, 138
WAIT, 541
WAIT SPOLL, 204
with files, 139
WRITE, 459497
WRITE(POKE), 546
TRIGGER
for EXECUTE, 532
troubleshooting
programs, 548
troubleshooting instruments, 548
types of data, 302

610 Index

U

unbuilding records, 361
unconstrained objects, 26
undeclared variables, 347
units

for PCOMPLEX phase, 485
UNIX

location of files, 48
UNIX security, 396
UNLISTEN

in SEND transactions, 185, 544
UNTALK

in SEND transactions, 185, 544
updated functions, 37
Upload

general usage, 178, 179
Upload String

in Direct 1/0 Configuration, 96
user interface (see panel view)
user-defined functions, 368—398
user-defined libraries, 368—375
UserFunction, 25, 369—371
UserFunction library, 373
UserFunctions, 557

calling from expressions, 370

converting to UserObjects, 369

merging, 375

time-dicing, 22, 369

used as ActiveX event handler, 423
UserObject, 267

propagation, 268
UserObjects

converting to UserFunctions, 369

problems with, 550

propagation in, 267—271

time-dicing, 22

with XEQ pins, 25
using

Call objects, 250

default attributesfile, 7

examples, 14

functions, 235

non-USASCI| keyboards, 11

V Xlplug& play drivers, 234—256

xrdb, 7

using the Instrument Manager, 586—84

\%

Variable, 240
variables, 314, 346
accessing values, 352
changes for VEE 5 mode, 31
declared, 348
declaring for ActiveX, 404, 430
declaring in libraries, 373
deleting, 353
global, 348
in transactions, 119, 120
initializing, 350
local, 348
naming, 348
naming precedence, 349
null, 119
scoping, 348
temporary, 347
termina names, 347
undeclared, 347
undeclared global, 347
using in libraries, 353
VDCs, 578
VEE
how to configure, 49
sharing colors with Rocky Mountain
Basic, 8—11
VEE 5 mode
defined, 29, 35
expressions, 30
global namespace, 31
in HP-UX, 34
variables, 31
VEE DATA API, 578
VEE Data Container (VDC), 578
VEE RPC API, 570
VEE RunTime, 558
VEE Service Manager, 571
starting in Windows, 395
VEE.IOfile
detailed explanation, 189
veeData.h, 579
veeio file, 398

Index 611

veerc file, 398

verification flag, 252

Vi, 238, 252, 256

VISA, 46, 234

VISA (Virtual Instrument Software

Architecture), 46

VXI
addressing directly, 218
addressing on GPIB, 216
advanced features, 204
Direct 1/O, 539
Interface Operations, 539
low-level control, 184, 209, 539
message- and register-based, 52
serial poll (message-based only), 204
service reguests (message-based

only), 205

VXIplug&play
backward compatibility, 234, 250
configuring, 79—82
definition of, 46
Driver Name, 97
example, 48
introduction, 46
limitations, 249
related documents, 38
using, 234—256

V XlIplug&play drivers
help on, 243

w

WAIT, 541543
Device Event, 204
INTERVAL, 541
MEMORY, 541
REGISTER, 541
SPOLL, 204, 541
Wait for Input, 23
Wait for Prog Exit
in Execute Program (PC), 167
in Execute Program (UNIX), 151
waveforms
importing, 144
Windows
location of files, 47

Word Access (VX1 only)
in Direct I/O Configuration, 104, 109
WORD16 format
for READ MEMORY, 529
for READ REGISTER, 528
for WRITE MEMORY,, 496
for WRITE REGISTER, 495
WORD32 format
for READ MEMORY, 529
for READ REGISTER, 528
for WRITE MEMORY, 496
for WRITE REGISTER, 495
WORD32* 32, 109, 110
Working Directory
in Execute Program, 168
WRITE
BINBLOCK, 177
encodings and formats, 460
file pointers, 139
path-specific behaviors, 459
simplified usage, 119
STATE, 177
TEXT, 177
write pointers, 140
WRITE transactions, 459—497
BINBLOCK, 178
STATE, 178
WRITE(POKE) transactions, 546

X

X11 attributes
changing, 7

X11 colorsflashing
correcting, 8—11

X11 resources
filelocation, 7

Xdefaults, 7

XEQ, 263
on Collector, 23
compatability mode changes, 23, 25
on OK, 25
on Sample & Hold, 23
on UserObject, 25

xrdb
using, 7

612 Index

	1 Introduction
	About This Manual
	Configuring VEE
	Configuring VEE for Windows
	Configuring VEE for UNIX
	Using Non-USASCII Keyboards (UNIX)
	Using HP-GL Plotters (UNIX)

	Using VEE Example Programs
	The Example Directories
	Running the Examples

	Using Library Objects
	Supported I/O Interfaces
	Using VEE Execution Modes
	Setting Execution Modes
	Execution Mode Changes: VEE 3 to VEE 4
	Execution Mode Changes: VEE 4 to VEE 5
	Execution Mode Changes: VEE 5 to VEE 6

	Related Reading

	2 Instrument Control Fundamentals
	Introduction to Direct I/O
	Introduction to VXIplug&play
	Introduction to Panel Drivers and Component Drivers
	Support For Register-Based VXI Devices

	3 Configuring Instruments
	Using the Instrument Manager
	Overview
	Auto Discovery
	The Instrument List
	Instrument Configuration
	Renaming an Instrument
	Adding a Panel Driver or Component Driver
	Configuring for a Direct I/O Object
	Configuring for a VXIplug&play Driver
	Configuring for a PC PlugIn Card

	Details of the Properties Dialog Boxes
	Instrument Properties Dialog Box
	Advanced Instrument Properties Dialog Box: General Tab
	Advanced Instrument Properties Dialog Box: Direct I/O Tab
	Advanced Instrument Properties Dialog Box: Plug&play Driver Tab
	Advanced Instrument Properties Dialog Box: Panel Driver Tab
	Advanced Instrument Properties Dialog Box: Serial Tab
	Advanced Instrument Properties Dialog Box: GPIO Tab
	Advanced Instrument Properties Dialog Box: A16 Space (VXI Only) Tab
	Advanced Instrument Properties Dialog Box: A24/A32 Space (VXI Only) Tab
	Interface Properties

	4 Using Transaction I/O
	Creating and Reading Transactions
	Creating and Editing Transactions
	Adding Terminals
	Reading Transaction Data
	Suggestions for Developing Transactions

	Using Transaction-Based Objects
	Execution Rules
	Object Configuration

	Choosing Correct Transactions
	Selecting Correct Objects and Transactions
	Using To String and From String

	Communicating With Files
	Using File Pointers
	Importing Data

	Communicating With Programs (UNIX) Rocky Mountain Basic
	Using Execute Program (UNIX)
	Using To/From Named Pipe (UNIX)
	Using To/From Socket
	Using Rocky Mountain Basic Objects (HP-UX)

	Communicating With Programs (PC)
	Using Execute Program (PC)
	Using Dynamic Data Exchange (DDE)
	DDE Examples

	Using Transactions in Direct I/O and Interface Operations
	Using the Direct I/O Object
	Using the MultiInstrument Direct I/O Object
	Using the Interface Operations Object

	5 Advanced I/O Topics
	I/O Configuration Techniques
	The I/O Configuration File
	Programmatic I/O Configuration
	LAN Gateways
	Protecting Critical Sections

	I/O Control Techniques
	Polling
	Service Requests
	Monitoring Bus Activity
	Low-Level Bus Control
	Instrument Downloading

	Logical Units and I/O Addressing
	Recommended I/O Logical Units for VEE
	I/O Addressing
	Excluding Address Space for the 82335 Card (Windows 95/98 Only)

	6 Using Panel Driver and Component Driver Objects
	Understanding Panel Driver and Component Driver Objects
	Inside Panel Drivers
	How Panel Driver-Based I/O Works
	Panel Driver Operation

	Selected Techniques
	Using Panel Driver Objects Interactively
	Using Panel Driver Objects Programmatically
	Using Component Driver Objects in a Program
	Getting Panel Driver Help

	7 Using VXIplug&play Drivers
	Using the To/From VXIplug&play Object
	Selecting a Function
	Getting Help on a VXIplug&play Driver
	Running a VEE Program

	Using VXIplug&play Functions from Call Objects
	Using a Dynamic Link Library or Shared Library in VEE

	8 Data Propagation
	Understanding Propagation
	How Objects Operate
	Basic Propagation Order
	Pins and Propagation
	Propagation of Threads and Subthreads
	Propagation Summary

	Propagation in UserObjects
	UserObject Features
	Contexts and UserObjects
	Propagation and UserObjects
	Data Output from a UserObject

	Controlling Program Flow
	Basic Program Control
	Advanced Program Control

	Handling Propagation Problems
	Error Handling
	Capturing Control Pin Errors
	Data Propagation on Control Pins
	Building a Record
	Multiple Inputs to a Formula
	Timing Events

	9 Math Operations
	Understanding Data Containers
	Data Container Operation
	Terminals Information

	Data Type Conversions
	VEE Data Types
	Converting Data Types

	Processing Data
	The Function & Object Browser
	General Concepts
	Using Global and Local Variables
	Using Dyadic Operators

	Array Operations in VEE
	Array Operations Techniques
	Basic Array Operations
	Advanced Array Operations

	10 Variables
	About Variables
	About Undeclared Variables
	About Declared Variables
	About Variables Naming

	Using Variables
	Setting Initial Values
	Accessing Variable Values
	Deleting Variables
	Using Variables in Libraries

	11 Using Records and DataSets
	Using Records
	Understanding Record Containers
	Accessing Records
	Programmatically Building Records
	Editing Record Fields

	Using DataSets

	12 User-Defined Functions/Libraries
	About UserFunctions
	Converting Between UserObjects and UserFunctions
	Calling a UserFunction from an Expression

	Using a Library of Functions
	Creating a UserFunction Library
	Importing and Calling a UserFunction
	Merging UserFunctions

	About Compiled Functions
	Using a Compiled Function
	Design Considerations for Compiled Functions
	Importing and Calling a Compiled Function
	Creating a Compiled Function (UNIX)
	Creating a Dynamic Link Library (MS Windows)
	Using DLL Functions in Formula Objects

	About Remote Functions
	Using Remote Functions
	UNIX Security, UIDs, and Names
	Resource Files
	Errors

	13 Using ActiveX Automation Objects and Controls
	Using ActiveX Automation in VEE
	Using ActiveX Automation Objects
	Making Automation Objects Available in VEE
	Declaring Automation Object Variables
	Creating an Automation Object in a Program
	Using Distributed Component Object Model (DCOM)
	Getting an Existing Automation Object
	Manipulating Automation Objects
	Data Type Compatibility
	Deleting Automation Objects
	Handling Automation Object Events

	Using ActiveX Automation Controls
	Selecting ActiveX Controls
	Adding a Control to VEE
	Using an ActiveX Control in VEE
	Manipulating ActiveX Controls

	14 Using the Sequencer Object
	The Sequencer Object
	What is the Sequencer Object?
	Logging Test Results

	Using the Sequencer Object
	Example: Sequencer Transactions
	Example: Logging Test Results
	Example: Logging to a DataSet
	Example: Bin Sort

	A I/O Transaction Reference
	I/O Transactions Summary
	WRITE Transactions
	Path-Specific Behaviors
	Behaviors for all Paths
	TEXT Encoding
	BYTE Encoding
	CASE Encoding
	BINARY Encoding
	BINBLOCK Encoding
	CONTAINER Encoding
	STATE Encoding
	REGISTER Encoding
	MEMORY Encoding
	IOCONTROL Encoding

	READ Transactions
	TEXT Encoding
	BINARY Encoding
	BINBLOCK Encoding
	CONTAINER Encoding
	REGISTER Encoding
	MEMORY Encoding
	IOSTATUS Encoding

	Other Transactions
	EXECUTE Transactions
	WAIT Transactions
	SEND Transactions
	WRITE(POKE) Transactions
	READ(REQUEST) Transactions

	B Troubleshooting Techniques
	C Instrument I/O Data Type Conversions
	D Keys to Faster Programming
	E ASCII Table
	F VEE for UNIX and VEE for Windows Differences
	G About Callable VEE
	Using the VEE RPC API
	About the VEE RPC API
	About the VEE DATA API

	Index

